

PHP Programming with PEAR
XML, Data, Dates, Web Services, and Web APIs

Maximize your PHP development productivity by
mastering the PEAR packages for accessing and
displaying data, handling dates, working with XML and
Web Services, and accessing Web APIs

Stephan Schmidt
Carsten Lucke
Stoyan Stefanov
Aaron Wormus

 BIRMINGHAM - MUMBAI

PHP Programming with PEAR
XML, Data, Dates, Web Services, and Web APIs

Copyright © 2006 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2006

Production Reference: 1160906

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 1-904811-79-5

www.packtpub.com

Cover Image by www.visionwt.com

Credits

Authors

Stephan Schmidt

Carsten Lucke

Stoyan Stefanov

Aaron Wormus

Reviewers

Lukas Smith

Shu-Wai Chow

Arnaud Limbourg

Development Editor

Douglas Paterson

Assistant Development Editor

Nikhil Bangera

Technical Editor

Ashutosh Pande

Editorial Manager

Dipali Chittar

Indexer

Mithil Kulkarni

Proofreader

Chris Smith

Layouts and Illustrations

Shantanu Zagade

Cover Designer

Shantanu Zagade

About the Authors

Stephan Schmidt is working for 1&1 Internet, the world’s largest web hosting
provider in Karlsruhe. He is leading a team of PHP and Java programmers and
focusses on the development of the websites and online ordering systems of 1&1.
He has been an active contributor to the PHP open source scene since 2001, when
he founded the PHP Application Tools website (http://www.php-tools.net)
together with some friends, which today is one of the oldest PHP OSS projects. He
has also been working on more than 15 PEAR packages (with a focus on XML and
web services), as well as the id3 extension. Recently he started the XJConf project
(http://www.xjconf.net) and also contributes to the Java community.

He is the author of the (German language) PHP Design Patterns (O'Reilly Verlag,
ISBN 3-89721-442-3) as well as a co-author of several other books on PHP and
has been writing articles for several magazines. He has also spoken at various
open-source conferences around the globe.

He devotes his spare time to American super-hero comics and the golden 50s.

Carsten Lucke studied computer science at the University of Applied Sciences
in Brandenburg, Germany. He is currently working as a software engineer for the
software design and management AG (sd&m AG) in Munich, Germany.

In his spare time he writes articles for various magazines and contributes to the
open-source community (especially PHP). He is the developer of a handful of PEAR/
PECL packages, founder of the 3rdPEARty pear channel-server project (3rdpearty.
net) and the tool-garage.de open-source and freeware project.

Stoyan Stefanov is a web developer from Montreal, Canada, Zend Certified
Engineer, book author, and contributor to the international PHP community. His
personal blog is at http://www.phpied.com.

I would like to thank Tom Kouri and the team at High-Touch
Communications in Montreal; special thanks to Derek Fong for
introducing me to PEAR and to Michael Caplan for always being up
to speed with the latest PEAR development.

Aaron Wormus is a freelance consultant working out of Frankfurt Germany.
With a background in client/server development and intranet infrastructure, Aaron
uses the power of PHP and Open Source tools to implement customized back-end
solutions for his clients.

As a writer, Aaron contributes regular articles for PHPMagazine, PHPArchitect and
PHPSolutions magazines. The topics of his articles have included PEAR Packages,
core PHP programming, and programming methodologies. Aaron is also an avid
blogger, and keeps his personal blog flowing with technical posts, political rants, and
regular updates on the state of the weird and wonderful thing that is the Internet.

When Aaron is not at his computer, you can probably find him chasing his two
daughters around, or wandering around the floor of a technology conference on a
caffeine-induced high.

About the Reviewers

Lukas Kahwe Smith has been developing PHP since 2000 and joined the PEAR
repository in 2001. Since then he has developed and maintained several PEAR
packages, most notably MDB2 and LiveUser and has influenced the organization of
the project itself as a founding member of the PEAR Group steering committee and
QA core team. Aside from several magazine publications he is a well known speaker
at various international PHP conferences.

Shu-Wai Chow has worked in the field of computer programming and information
technology for the past eight years. He started his career in Sacramento, California,
spending four years as the webmaster for Educaid, a First Union company and
another four years at Vision Service Plan as an application developer. Through the
years, he has become proficient in Java, JSP, PHP, ColdFusion, ASP, LDAP, XSLT,
and XSL-FO. Shu has also been the volunteer webmaster and a feline adoption
counselor for several animal welfare organizations in Sacramento.

He is currently a software engineer at Antenna Software in Jersey City, New Jersey.

Born in the British Crown Colony of Hong Kong, Shu did most of his alleged growing
up in Palo Alto, California. He studied Anthropology and Economics at California
State University, Sacramento. He lives along the New Jersey coast with seven very
demanding cats, three birds that are too smart for their own good, a cherished Fender
Stratocaster, and a beloved, saint-like girlfriend.

Arnaud Limbourg has been developing in PHP for 4 years. He is involved in the
PEAR project as an assurance quality member and co-maintainer of the LiveUser
package. He currently works for a telecom company doing VoIP as a developer.

Table of Contents
Preface 1
Chapter 1: MDB2 5

A Brief History of MDB2 5
Abstraction Layers 6

Database Interface Abstraction 6
SQL Abstraction 6
Datatype Abstraction 7

Speed Considerations 7
MDB2 Package Design 7
Getting Started with MDB2 8

Installing MDB2 8
Connecting to the Database 9

DSN Array 9
DSN String 9

Instantiating an MDB2 object 10
Options 10

Option "persistent" 11
Option "portability" 11

Setting Fetch Mode 12
Disconnecting 12

Using MDB2 12
A Quick Example 13
Executing Queries 14
Fetching Data 14
Shortcuts for Retrieving Data 15
query*() Shortcuts 15
get*() Shortcuts 16

getAssoc() 17

Table of Contents

[ii]

Data Types 18
Setting Data Types 18
Setting Data Types when Fetching Results 19
Setting Data Types for get*() and query*() 20

Quoting Values and Identifiers 20
Iterators 21
Debugging 22

MDB2 SQL Abstraction 23
Sequences 23
Setting Limits 24
Replace Queries 24
Sub-Select Support 25
Prepared Statements 26

Named Parameters 27
Binding Data 27
Execute Multiple 28
Auto Prepare 28
Auto Execute 29

Transactions 30
MDB2 Modules 31

Manager Module 32
Function Module 35
Reverse Module 36

Extending MDB2 37
Custom Debug Handler 38
Custom Fetch Classes 40
Custom Result Classes 41
Custom Iterators 44
Custom Modules 44

Mymodule2 45
MDB2_Schema 46

Installation and Instantiation 46
Dump a Database 46
Switching your RDBMS 49

Summary 50
Chapter 2: Displaying Data 51

HTML Tables 51
Table Format 52
Using HTML_Table to Create a Simple Calendar 53

Setting Individual Cells 54
Extended HTML_Table with HTML_Table_Matrix 56

Excel Spreadsheets 58
The Excel Format 58

Table of Contents

[iii]

Our First Spreadsheet 59
About Cells 60
Setting Up a Page for Printing 60
Adding some Formatting 61
About Colors 62
Pattern Fill 63
Number Formatting 64
Adding Formulas 66
Multiple Worksheets, Borders, and Images 67
Other ways to create Spreadsheets 69

CSV 69
The Content-Type Trick 69
Generating Excel 2003 Files 69
Creating Spreadsheets using PEAR_OpenDocument 70

DataGrids 70
DataSources 71
Renderers 71
A Simple DataGrid 72
Paging the Results 73
Using a DataSource 73
Using a Renderer 74
Making it Pretty 75
Extending DataGrid 76
Adding Columns 77

Generating PDF Files 78
Colors 82
Fonts 82
Cells 83
Creating Headers and Footers 83

Summary 84
Chapter 3: Working with XML 85

PEAR Packages for Working with XML 86
Creating XML Documents 86

Creating a Record Label from Objects 88
Creating XML Documents with XML_Util 92

Additional Features 96
Creating XML Documents with XML_FastCreate 97

Interlude: Overloading in PHP5 98
Back to XML 99
Creating the XML Document 102
Pitfalls in XML_FastCreate 104

Table of Contents

[iv]

Creating XML Documents with XML_Serializer 105
XML_Serializer Options 107
Adding Attributes 109
Treating Indexed Arrays 110
Creating the XML Document from the Object Tree 113
Putting Objects to Sleep 116
What's your Type? 118

Creating Mozilla Applications with XML_XUL 120
XUL Documents 120
Creating XUL Documents with XML_XUL 123
Creating a Tab Box 127

Processing XML Documents 129
Parsing XML with XML_Parser 131

Enter XML_Parser 132
Implementing the Callbacks 133
Adding Logic to the Callbacks 136
Accessing the Configuration Options 139
Avoiding Inheritance 140
Additional XML_Parser Features 142

Processing XML with XML_Unserializer 143
Parsing Attributes 145
Mapping XML to Objects 148
Unserializing the Record Labels 154
Additional Features 156
XML_Parser vs. XML_Unserializer 156

Parsing RSS with XML_RSS 157
Summary 161

Chapter 4: Web Services 163
Consuming Web Services 164

Consuming XML-RPC-Based Web Services 164
Accessing the Google API 170
Consuming REST-Based Web Services 173

Searching Blog Entries with Services_Technorati 173
Accessing the Amazon Web Service 179

Consuming Custom REST Web Services 188
Offering a Web Service 196

Offering XML-RPC-Based Web Services 197
Error Management 202

Offering SOAP-Based Web Services 205
Error Management 210

Offering REST-Based Services using XML_Serializer 212
Our Own REST Service 214

Summary 222

Table of Contents

[v]

Chapter 5: Working with Dates 223
Working with the Date Package 223

Date 224
Creating a Date Object 224
Querying Information 225
Manipulating Date Objects 226
Comparing Dates 227
Formatted Output 228
Creating a Date_Span Object 229
Manipulating Date_Span Objects 230
Timespan Conversions 231
Comparisons 231
Formatted Output 232
Date Objects and Timespans 232

Dealing with Timezones using Date_Timezone 233
Creating a Date_Timezone object 234
Querying Information about a Timezone 234
Comparing Timezone Objects 235
Date Objects and Timezones 235

Conclusion on the PEAR::Date Package 237
Date_Holidays 237

Instantiating a Driver 238
Identifying Holidays 239
The Date_Holidays_Holiday Class 240

Calculating Holidays 240
Getting Holiday Information 241
Filtering Results 242
Combining Holiday Drivers 244

Is Today a Holiday? 244
Multi-Lingual Translations 246

Adding a Language File 247
Getting Localized Output 248

Conclusion on Date_Holidays 250
Working with the Calendar Package 250

Introduction to Basic Classes and Concepts 252
Object Creation 255

Querying Information 255
Building and Fetching 257
Make a Selection 258

Validating Calendar Date Objects 259
Validation Versus Adjustment 260
Dealing with Validation Errors 260

Adjusting the Standard Classes' Behavior 261
What are Decorators? 262
The Common Decorator Base Class 262
Bundled Decorators 262

Table of Contents

[vi]

Generating Graphical Output 263
Navigable Tabular Calendars 265

Summary 270
Index 271

Preface
PEAR is the PHP Extension and Application Repository, and is a framework and
distribution system for reusable, high-quality PHP components, available in the form
of "packages". The home of PEAR is pear.php.net, from where you can download
and browse this extensive range of powerful packages. For most things that you
would want to use in your day-to-day development work, you will likely find a
PEAR class or package that meets your needs. In addition to the functionality offered
by the packages, PEAR code follows strict coding guidelines, bringing a consistency
to your PEAR development experience.

In this book, you will learn how to use a number of the most powerful PEAR
packages to boost your PHP development productivity. By focusing on the packages
for key development activities, this book gives you an in-depth guide to getting the
most from these powerful coding resources.

What This Book Covers
Chapter 1 provides an introduction to the MDB2 database abstraction layer. You will
see how to connect to the database, instantiate MDB2 objects, execute queries and
fetch data. There are a number of features and SQL syntax that are implemented
differently in the database systems that MDB2 supports. MDB2 does its best to wrap
the differences and provide a single interface for accessing those features, so that
the developer doesn't need to worry about the implementation in the underlying
database system. You will see how to use this SQL abstraction feature to provide
auto-increment fields, perform "replace" queries that will update the records that
already exist or do an insert otherwise, and make use of prepared statements, a
convenient and security-conscious method of writing to the database. You will also
learn about MDB2 modules and how to extend MDB2 to provide custom fetch and
result classes, iterators, and modules.

Now that you've got data from your database, you want to display it.

Preface

[2]

Chapter 2 covers a range of PEAR packages commonly used for presenting data in
different formats. You will see how to use HTML_Table and HTML_Table_Matrix to
create and format tables, generate and format an Excel spreadsheet with the Excel_
Spreadsheet_Writer package, create a flexible, pageable "datagrid" with Structures_
Datagrid, and generate PDF documents on the fly with File_PDF.

XML is another favorite format for working with data, and PEAR does not let you
down with its XML support.

In Chapter 3 we take an in-depth look at working with XML in PEAR. The
chapter covers creating XML documents using the XML_Util, XML_FastCreate,
XML_Serializer, and XML_XUL packages. The chapter also covers reading XML
documents using a SAX-based parser and transforming PHP objects into XML (and
back again!) with XML_Serializer and XML_Unserialize.

Chapter 4 introduces you to PEAR's support for web services and Web APIs. You will
learn about consuming SOAP and XML-RPC web services, access the Google API,
search blog entries with Services_Technorati, access the Amazon web service, access
the Yahoo API, and learn how to offer web services, either XML-RPC or SOAP based.
You will also get a taste of offering a REST-based service with XML_Serializer.

Chapter 5 covers PEAR's date and time functions using PEAR::Calendar and PEAR::
Date. You will learn about the benefits these packages offer over the standard PHP
date and time functions, and then see how to create, manipulate, and compare
Date objects, work with Date_Span arithmetic, handle timezones, keep track of
public holidays with Date_Holiday, and use the Calendar class to display an
HTML calendar.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "This class
also provides a setId() method, which is called by the Label object when the artist
is added to the list of signed artists."

A block of code will be set as follows:

function getDGInstance($type)
{
 if (class_exists($type))

Preface

[3]

 {
 $datagrid =& new $type;
 return $datagrid;
 } else
 {
 return false;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

$driver = Date_Holidays::factory($driverId, $year);
$internalNames = $driver->getInternalHolidayNames();

 Any command-line input and output is written as follows:

$ pear-dh-compile-translationfile --help

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

Preface

[4]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of this
book. If you find any errata, report them by visiting http://www.packtpub.com/
support, selecting your book, clicking on the Submit Errata link, and entering the
details of your errata. Once your errata have been verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

MDB2
The Web has matured and grown over the last decade and with it the need for
more complex and dynamic sites. While storing information in a text file or simple
database may have been suitable in the past, these days any serious application
developer requires a firm knowledge of how to wield the relational database.

From the earliest versions of PHP, programmers have always been able to count on
strong database support. However until the recent release of PDO there had been no
standard way of interfacing with the multiple database drivers bundled with PHP.
The lack of unified API has spawned several efforts to create database abstraction
layers (DBAL). The primary goal of these efforts is to enable developers to write code
that is not specific to the database back end being used, thereby enabling clients/
users to deploy the application on whichever database platform they prefer.

The three most prominent full-featured database abstraction layers over the years
have been AdoDB, PEAR::DB, and Metabase. In the last few years we have seen
another very strong contender in the arena of database abstraction layers, and that is
PEAR::MDB. This chapter is about MDB's second iteration—MDB2.

A Brief History of MDB2
It all started when Lukas Smith, a PEAR developer, submitted a few patches to
the existing DBAL, Metabase. At some point he and the Metabase author started
discussing bringing Metabase into PEAR as a new package. The goal of the new
package was to merge the functionality of Metabase with the API of the existing
and popular PEAR::DB into a feature-rich and well-performing database abstraction
library, leveraging the PEAR infrastructure. Thus began the life of MDB2's
predecessor PEAR::MDB.

After a few years of work on PEAR::MDB, it became apparent that the decision to
keep a similar API to that of Metabase and PEAR::DB created some design issues,
which hampered the growth of MDB into a full-featured DBAL. Since PEAR::MDB

MDB2

[6]

had reached a stable state in PEAR, it was not possible to fix these API issues without
breaking backwards compatibility, which was not an option. The solution was to
take the lessons learned during the development of Metabase and MDB and apply
them to a new package that would contain a well-designed and modern API. The
new package became MDB2.

Abstraction Layers
Before we get into the details of how MDB2 handles database abstraction, we should
take a look at database abstraction theory and find out exactly what it means. There
are several different facets to database abstraction, and we will go over them and
specify what their requirements are.

Database Interface Abstraction
Database interface abstraction is the most important of all; it allows a programmer
to access every database using the same method calls. This means that instantiating
a database connection, sending a query, and retrieving the data will be identical,
regardless of which database you are interfacing with.

SQL Abstraction
Most modern databases support a standard subset of SQL, so most SQL that you
write will work regardless of which database back end you are using. However,
many databases have introduced database-specific SQL lingo and functions, so it
is possible that the SQL that you write for one database will not work on another.
As an RDBMS (Relational DataBase Management System) matures, sometimes
it implements features that are not compatible with older versions of the same
database. So if an application developer wants to write SQL compliant with all
versions of a specific database (or which can be used on multiple database back
ends), one option is to stick to SQL they know is supported on all platforms. The
better option though, is to use an abstraction layer that emulates the functionality
when it's not available on the specific platform.

While there is no possible way to encapsulate every possible SQL function, MDB2
provides support for many of the most common features of SQL. These features
include support for LIMIT queries, sub-selects, and prepared queries among others.
Using the MDB2 SQL abstraction will guarantee that you'll be able to use this
advanced functionality, even though it's not natively supported in the database
you're using. Further in this chapter you'll learn more about the different SQL
abstraction functions that MDB2 provides.

Chapter 1

[7]

Datatype Abstraction
The third type of abstraction is the datatype abstraction. The need for this type of
abstraction stems from the fact that different databases handle data types differently.

Speed Considerations
Now that you are salivating over all these great features that are bundled in MDB2,
you should think about speed and performance issues. When using a database
abstraction layer you need to understand that in many cases you will need to
sacrifice performance speed for the wealth of functionality that the package offers.
This is not specific to MDB2 or even database abstraction layers, but to abstraction
layers or software virtualization systems in general.

Thankfully, unlike VMWare or Microsoft Virtual PC, which abstract each system call
made, MDB2 only provides abstraction when a feature is not available in a specific
back end. This means that performance will depend on the platform on which you are
using MDB2. If you are very concerned about performance, you should run an opcode
cache, or turn on a database-specific query caching mechanism in your particular
database. Taking these steps in PHP itself or your database back end will make the
overhead, which is inevitable in your database abstraction layer, much smaller.

MDB2 Package Design
The API design of MDB2 was created to ensure maximum flexibility. A modular
approach was taken when handling both database back ends and specific advanced
functionality. Each database -specific driver is packaged and maintained as an
independent PEAR module. These driver packages have a life of their own,
which means individual release cycles and stability levels. This system allows the
maintainers of the database drivers to release their packages as often as they need to,
without having to wait for a release of the main MDB2 package. This also allows the
MDB2 package to advance in stability regardless of the state of the driver packages,
the effect being that while the state of MDB2 is stable, some of its drivers may only
be beta. Also, when a new database driver is released, it is tagged as alpha and the
release process progresses according to PEAR standards.

The second type of modularity built into MDB2 is used for adding extended
functionality to MDB2. Rather than include the functions into MDB2 itself or extend
MDB2 with a new class that adds this functionality, you have the option to create a
separate class and then load it into MDB2 using the loadModule() method. Once a
module is loaded into MDB2, you will be able to access your methods as if they
were built into MDB2. MDB2 uses this internally to keep the core components as fast

MDB2

[8]

as possible, and also makes it possible for the user to define and include their own
classes into MDB2. You'll see the details of how to extend MDB2 later in this chapter.

Getting Started with MDB2
Let's discuss the necessary steps to install MDB2, to create an MDB2 object, and
then set up some options to set the data fetch mode and finally disconnect from
the database.

Installing MDB2
When installing MDB2, keep in mind that the MDB2 package does not include any
database drivers, so these will need to be installed separately. MDB2 is stable, but as
explained earlier, since the packages have different release cycles, the status of the
package you plan to use may be beta, alpha, or still in development. This will need to
be taken into consideration when installing a driver package.

The easiest way to install MDB2 is by using the PEAR installer:

> pear install MDB2

This command will install the core MDB2 classes, but none of the database drivers.
To install the driver for the database you'll be using, type:

> pear install MDB2_Driver_mysql

This will install the driver for MySQL. If you wish to install the driver for SQLite, type:

> pear install MDB2_Driver_sqlite

The full list of currently available drivers is as follows:

fbsql: FrontBase
ibase: InterBase
mssql: MS SQL Server
mysql: MySQL
mysqli: MySQL using the mysqli PHP extension; for more details, visit
http://php.net/mysqli

oci8: Oracle
pgsql: PostgreSQL
querysim: Querysim
sqlite: SQLite

•

•

•

•

•

•

•

•

•

Chapter 1

[9]

Connecting to the Database
To connect to your database after a successful installation, you need to set up the
DSN (Data Source Name) first. The DSN can be a string or an array and it defines
the parameters for your connection, such as the name of the database, the type of the
RDBMS, the username and password to access the database, and so on.

DSN Array
If the DSN is defined as an array, it will look something like this:

$dsn = array ('phptype' => 'mysql',
 'hostspec' => 'localhost:3306',
 'username' => 'user',
 'password' => 'pass',
 'database' => 'mdb2test'
);

Here's a list of keys available to use in the DSN array:

phptype: The name of the driver to be used, in other words, it defines the
type of the RDBMS
hostspec: (host specification) can look like hostname:port or it can be only
the hostname while the port can be defined separately in a port array key
database: The name of the actual database to connect to
dbsyntax: If different than the phptype
protocol: The protocol, for example TCP
socket: Mentioned if connecting via a socket
mode: Used for defining the mode when opening the database file

DSN String
A quicker and friendlier way (once you get used to it) to define the DSN is to use a
string that looks similar to a URL. The basic syntax is:

phptype://username:password@hostspec/database

The example above becomes:

$dsn = 'mysql://user:pass@localhost:3306/mdb2test';

More details on the DSN and more DSN string examples are available in the PEAR
manual at http://pear.php.net/manual/en/package.database.mdb2.intro-dsn.php.

•

•

•

•

•

•

•

MDB2

[10]

Instantiating an MDB2 object
There are three methods to create an MDB2 object:

$mdb2 =& MDB2::connect($dsn);
$mdb2 =& MDB2::factory($dsn);
$mdb2 =& MDB2::singleton($dsn);

connect() will create an object and will connect to the database. factory() will
create an object, but will not establish a connection until it's needed. singleton()
is like factory() but it makes sure that only one MDB2 object exists with the same
DSN. If the requested object exists, it's returned; otherwise a new one is created.

One scenario exists where you can "break" the singleton functionality by using
setDatabase() to set the current database to a database different from the one
specified in the DSN.

$dsn = 'mysql://root@localhost/mdb2test';
$mdb2_first =& MDB2::singleton($dsn);
$mdb2_first->setDatabase('another_db');
$mdb2_second =& MDB2::singleton($dsn);

In this case you'll have two different MDB2 instances.

All three methods will create an object of the database driver class. For example,
when using the MySQL driver, the variable $mdb2 defined above will be an instance
of the MDB2_Driver_mysql class.

Options
MDB2 accepts quite a few options that can be set with the call to connect(),
factory(), or singleton(), or they can be set later using the setOption() method
(to set one option a time) or the setOptions() method (to set several options at
once). For example:

$options = array ('persistent' => true,
 'ssl' => true,
);
$mdb2 =& $MDB2::factory($dsn, $options);

or

$mdb2->setOption('portability', MDB2_PORTABILITY_NONE);

The full list of available options can be found in the package's API docs at:
http://pear.php.net/package/MDB2/docs/. Let's take a look at two important
ones right away.

Chapter 1

[11]

Option "persistent"
This Boolean option defines whether or not a persistent connection should be
established.

There is an informative article on mysql.com about
the pros and cons of using persistent connections in
MySQL; it's located at http://www.mysql.com/
news-and-events/newsletter/2002-11/
a0000000086.html.

The default value is false. If you want to override the default, you can set it when
the object is created:

$options = array ('persistent' => true
);
$mdb2 =& MDB2::factory($dsn, $options);

Using setOption() you can define options after the object has been created:

$mdb2->setOption('persistent', true);

Option "portability"
MDB2 tries to address some inconsistencies in the way different DBMS implement
certain features. You can define to which extent the database layer should worry
about the portability of your scripts by setting the portability option.

The different portability options are defined as constants prefixed with
MDB2_PORTABILITY_* and the default value is MDB2_PORTABILITY_ALL, meaning
"do everything possible to ensure portability". The full list of portability constants
and their meaning can be found at http://pear.php.net/manual/en/package.
database.mdb2.intro-portability.php.

You can include several portability options or include all with some exceptions by
using bitwise operations, exactly as you would do when setting error reporting in
PHP. The following example will set the portability to all but lowercasing:

MDB2_PORTABILITY_ALL ^ MDB2_PORTABILITY_LOWERCASE

If you don't want use the full portability features of MDB2 but only trim white space
in results and convert empty values to null strings:

MDB2_PORTABILITY_RTRIM | MDB2_PORTABILITY_EMPTY_TO_NULL

MDB2

[12]

Probably the best thing to do is to leave the default MDB2_PORTABILITY_ALL; this
way if you run into some problems with your application, you can double-check the
database access part to ensure that the application is as portable as possible.

Setting Fetch Mode
One more setting you'd probably want to define upfront is the fetch mode, or the
way results will be returned to you. You can have them as an enumerated list (default
option), associative arrays, or objects. Here are examples of setting the fetch mode:

$mdb2->setFetchMode(MDB2_FETCHMODE_ORDERED);
$mdb2->setFetchMode(MDB2_FETCHMODE_ASSOC);
$mdb2->setFetchMode(MDB2_FETCHMODE_OBJECT);

Probably the friendliest and the most common fetch mode is the associative array,
because it gives you the results as arrays where the keys are the names of the table
columns. To illustrate the differences, consider the different ways of accessing the
data in your result sets:

echo $result[0]; // ordered/enumerated array, default in MDB2
echo $result['name']; // associative array
echo $result->name; // object

There is one more fetch mode type, which is MDB2_FETCHMODE_FLIPPED. It's a bit
exotic and its behavior is explained in the MDB2 API documentation as:

"For multi-dimensional results, normally the first level of arrays is the row number,
and the second level indexed by column number or name. MDB2_FETCHMODE_
FLIPPED switches this order, so the first level of arrays is the column name, and the
second level the row number."

Disconnecting
If you want to explicitly disconnect from the database, you can call:

$mdb2->disconnect();

Even if you do not disconnect explicitly, MDB2 will do that for you in its destructor.

Using MDB2
Once you've connected to your database and have set some of the options and the
fetch mode, you can start executing queries. For the purpose of the examples in this
chapter, let's say you have a table called people that looks like this:

Chapter 1

[13]

id name family birth_date
1 Eddie Vedder 1964-12-23
2 Mike McCready 1966-04-05
3 Stone Gossard 1966-07-20

A Quick Example
Here's a quick example, just to get a feeling of how MDB2 can be used. You'll learn
the details in a bit, but take a moment to look at the code and see if you can figure it
out yourself.

<?php
require_once 'MDB2.php';
// setup
$dsn = 'mysql://root:secret@localhost/mdb2test';
$options = array ('persistent' => true);
$mdb2 =& MDB2::factory($dsn, $options);
$mdb2->setFetchMode(MDB2_FETCHMODE_ASSOC);

// execute a query
$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);

// display first names
while ($row = $result->fetchRow())
{
 echo $row['name'], '
';
}

// release resources
$result->free();

// disable queries
$mdb2->setOption('disable_query', true);

// delete the third record
$id = 3;
$sql = 'DELETE FROM people WHERE id=%d';
$sql = sprintf($sql, $mdb2->quote($id, 'integer'));
echo '<hr />Affected rows: ';
echo $mdb2->exec($sql);

// close connection
$mdb2->disconnect();
?>

MDB2

[14]

Executing Queries
To execute any query, you can use the query() or exec() methods. The query()
method returns an MBD2_Result object on success, while exec() returns the number
of rows affected by the query, if any. So exec() is more suitable for queries that
modify data.

While you can basically perform any database operation with query(), there are
other methods, discussed later, that are better suited for more specific common tasks.

Fetching Data
In the example above we had:

$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);

The variable $result will be an MDB2_Result object, or more specifically, it will be
a database driver-dependent class that extends MDB2_Result, for example MDB2_
Result_mysql. To navigate through the result set you can use the fetchRow()
method in a loop.

while ($row = $result->fetchRow())
{
 echo $row['name'], '
';
}

Every time you call fetchRow(), it will move to the next record and will give you
a reference to the data contained in it. Apart from fetchRow(), there are also other
methods of the fetch*() family:

fetchAll() will give you an array of all records at once.
fetchOne() will return the value from first field of the current row if called
without any parameters, or it can return any single field of any row. For
example, fetchOne(1,1) will return Mike, the second column of the
second row.
fetchCol($colnum) will return all the rows in the column with number
$colnum, or the first column if the $colnum parameter is not set.

Note that fetchRow() and fetchOne() will move the internal pointer to the current
record, while fetchAll() and fetchCol() will move it to the end of the result set.
So in the example above if you call fetchOne(1) twice, you'll get Eddie then Mike.
You can also use $result->nextResult() to move the pointer to the next record in
the result set or $result->seek($rownum) to move the pointer to any row specified

•

•

•

Chapter 1

[15]

by $rownum. If in doubt, $result->rowCount() will tell you where in the result set
your pointer currently is.

You also have access to the number of rows and the number of columns in a result set:

$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);
echo $result->numCols(); // prints 4
echo $result->numRows(); // prints 3

Shortcuts for Retrieving Data
Often it is much more convenient to directly get the data as associative arrays (or
your preferred fetch mode) and not worry about navigating the result set. MDB2
provides two sets of shortcut methods – query*() methods and get*() methods.
They take just one method call to do the following:

1. Execute a query
2. Fetch the data returned
3. Free the resources taken by the result

query*() Shortcuts
You have at your disposal the methods queryAll(), queryRow(), queryOne(),
and queryCol(), which correspond to the four fetch*() methods explained
above. Here's an example to illustrate the difference between the query*() and the
fetch*() methods:

// the SQL statement
$sql = 'SELECT * FROM people';
// one way of getting all the data
$result = $mdb2->query($sql);
$data = $result->fetchAll();
$result->free(); // not required, but a good habit
// the shortcut way
$data = $mdb2->queryAll($sql);

In both cases if you print_r() the contents in $data and use the associative array
fetch mode, you'll get:

Array ([0] => Array ([id] => 1
 [name] => Eddie
 [family] => Vedder
 [birth_date] => 1964-12-23

MDB2

[16]

)
 [1] => Array ([id] => 2
 [name] => Mike
 [family] => McCready
 [birth_date] => 1966-04-05
)
 ...
)

get*() Shortcuts
In addition to the query*() shortcuts, you have the get*() shortcuts, which behave
in the same way, but also allow you to use parameters in your queries. Consider the
following example:

$sql = 'SELECT * FROM people WHERE id=?';
$mdb2->loadModule('Extended');
$data = $mdb2->getRow($sql, null, array(1));

In this example the question mark in the statement is a placeholder that will be
replaced by the value in the third parameter of getRow().

You can also use named parameters, like this:

$sql = 'SELECT * FROM people WHERE id=:the_id';
$mdb2->loadModule('Extended');
$data = $mdb2->getRow($sql,
 null,
 array('the_id' => 1)
);

Note that the get*() methods are in the Extended MDB2 module, which
means that they are not available until you load that module using $mdb2-
>loadModule('Extended').

Loading modules benefits from object overloading, which was not available before
PHP5, so to get access to the methods of the Extended module in PHP4, you need to
call them using:

$mdb2->extended->getAll($sql);

as opposed to:

$mdb2->getAll($sql);

Chapter 1

[17]

getAssoc()
Another useful get*() method that doesn't have a directly corresponding fetch*() or
query*() is getAssoc(). It returns results just like getAll(), but the keys in the result
array are the values of the first column. In addition, if there are only two columns
in the result set, since one of them is already used as an array index, the other one is
returned as a string (аs opposed to an array with just one element). A few examples to
illustrate the differences between getAll() and getAssoc():

$sql = 'SELECT id, name FROM people';
$mdb2->loadModule('Extended');
$data = $mdb2->getAll($sql);

getAll() will return an enumerated array and each element of the array is an
associative array containing all the fields.

Array ([0] => Array ([id] => 1
 [name] => Eddie
)
 [1] => Array ([id] => 2
 [name] => Mike
)
 ...
)

If the same query is executed with getAssoc(), like $data = $mdb2-
>getAssoc($sql); the result is:

Array ([1] => Eddie
 [2] => Mike
 [3] => Stone
)

If your query returns more than two rows, each row will be an array, not a scalar.
The code follows:

$sql = 'SELECT id, name, family FROM people';
$mdb2->loadModule('Extended');
$data = $mdb2->getAssoc($sql);

And the result:

Array ([1] => Array ([name] => Eddie
 [family] => Vedder
)
 ...
)

MDB2

[18]

Data Types
To address the issue of different database systems supporting different field types,
MDB2 comes with its own portable set of data types. You can use MDB2's data types
and have the package ensure portability across different RDBMS by mapping those
types to ones that the underlying database understands.

The MDB2 data types and their default values are as follows:

$valid_types = array ('text' => '',
 'boolean' => true,
 'integer' => 0,
 'decimal' => 0.0,
 'float' => 0.0,
 'timestamp' => '1970-01-01 00:00:00',
 'time' => '00:00:00',
 'date' => '1970-01-01',
 'clob' => '',
 'blob' => '',
)

More detailed information on the data types is available in the datatypes.html
document you can find in the docs folder of your PEAR installation. You can also
find this document on the Web, in the PEAR CVS repository:

http://cvs.php.net/viewcvs.cgi/pear/MDB2/docs/datatypes.html?view=co

Setting Data Types
In all the data retrieval methods that you just saw (query*(), fetch*(), get*())
you can specify the type of the results you expect and MDB2 will convert the values
to the expected data type. For example the query() method accepts an array of field
data types as a second parameter.

$sql = 'SELECT * FROM people';
$types = array();
$result = $mdb2->query($sql, $types);
$row = $result->fetchRow();
var_dump($row);

Here the $types array was blank, so you'll get the default behavior (no data type
conversion) and all the results will be strings. The output of this example is:

array(2)
{
 ["id"] => string(1) "1"
 ["name"]=> string(5) "Eddie"

Chapter 1

[19]

...
}

But you can specify that the first field in each record is of type integer and the
second is text by setting the $types array like this:

$types = array('integer', 'text');

In this case you'll get:

array(2)
{
 ["id"]=> int(1)
 ["name"]=> string(5) "Eddie"
...
}

When setting the types, you can also use an associative array where the keys are the
table fields. You can even skip some fields if you don't need to set the type for them.
Some valid examples:

$types = array('id' => 'integer',
 'name' => 'text'
);
$types = array('name'=>'text');
$types = array('integer');

Setting Data Types when Fetching Results
If you didn't set the data types during a query() call, it's still not too late. Before you
start fetching, you can set the types by calling the setResultTypes() method.

// execute query
$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);

// fetch first row without type conversion
$row = $result->fetchRow();
var_dump($row['id']);
// output is: string(1) "1"

// specify types
$types = array('integer');
$result->setResultTypes($types);

// all consecutive fetches will convert
// the first column as integer

MDB2

[20]

$row = $result->fetchRow();
var_dump($row['id']);
// output is: int(2)

Setting Data Types for get*() and query*()
All the get*() and query*() methods that you saw earlier in this chapter accept
data types as a second parameter, just like query() does.

You can set the data types parameter not only as an array $types =
array('integer'), but also as a string $types = 'integer'. This is convenient
when you work with methods that return one column only, such as getOne(),
queryOne(), getCol(), and queryCol(), but you should be careful when using it
for *All() and *Row() methods because the string type parameter will set the type
for all the fields in the record set.

Quoting Values and Identifiers
The different RDBMS use different quoting styles (for example single quotes ' as
opposed to double quotes ") and also quote different data types inconsistently.
For example, in MySQL you may (or may not) wrap integer values in quotes, but for
other databases you may not be allowed to quote them at all. It's a good idea
to leave the quoting job to the database abstraction layer, because it "knows" the
different databases.

MDB2 provides the method quote() for quoting data and quoteIdentifier() to
quote database, table, and field names. All the quotes MDB2 inserts will be the ones
appropriate for the underlying RDBMS. An example:

$sql = 'UPDATE %s SET %s=%s WHERE id=%d';
$sql = sprintf($sql,
 $mdb2->quoteIdentifier('people'),
 $mdb2->quoteIdentifier('name'),
 $mdb2->quote('Eddie'), // implicit data type
 $mdb2->quote(1, 'integer') // explicit type
);

If you echo $sql in MySQL you'll get:

UPDATE `people` SET `name`='Eddie' WHERE id=1

In Oracle or SQLite the same code will return:

UPDATE "people" SET "name"='Eddie' WHERE id=1

Chapter 1

[21]

As you can see in the example above, quote() accepts an optional second parameter
that sets the type of data (MDB2 type) to be quoted. If you omit the second
parameter, MDB2 will try to make a best guess for the data type.

Iterators
MDB2 benefits from the Standard PHP Library (http://php.net/spl), and
implements the Iterator interface, allowing you to navigate through query results
in a simpler manner:

foreach ($result as $row)
{
 var_dump($row);
}

For every iteration, $row will contain the next record as an array. This is equivalent
to calling fetchRow() in a loop, like this:

while ($row = $result->fetchRow())
{
 var_dump($row);
}

In order to benefit from the Iterator implementation, you need to include the file
Iterator.php from MDB2's directory by using the loadFile() method:

MDB2::loadFile('Iterator');

Then when you call query(), you pass the name of the Iterator class as a fourth
parameter, like this:

$query = 'SELECT * FROM people';
$result = $mdb2->query($query, null, true, 'MDB2_BufferedIterator');

MDB2 comes with two Iterator classes:

MDB2_Iterator: This implements SPL's Iterator and is suitable to work
with unbuffered results.
MDB2_BufferedIterator: This extends MDB2_Iterator and implements the
SeekableIterator interface. When you work with buffered results (which
is the default in MDB2), it's better to use MDB2_BufferedIterator, because it
provides some more methods, like count() and rewind().

•

•

MDB2

[22]

Debugging
MDB2 allows you to keep a list of all queries executed in an instance, this way
helping you debug your application. To enable the debugging, you need to set the
debug option to a positive integer.

$mdb2->setOption('debug', 1);

Then you can get the collected debugging data at any point using:

$mdb2->getDebugOutput();

You can also set the option log_line_break, which specifies how the separate
entries in the debug output will be delimited. The default delimiter is a line break \n.

Take a look at the following example that sets the debug option and the line separator,
executes a few queries, and then draws an unordered list with the debug output.

$mdb2->setOption('debug', 1);
$mdb2->setOption('log_line_break', "\n\t");

$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);
$sql = 'SELECT * FROM people WHERE id = 1';
$result = $mdb2->query($sql);
$sql = 'SELECT name FROM people';
$result = $mdb2->query($sql);

$debug_array = explode("\n\t", trim($mdb2->getDebugOutput()));

echo '';
echo implode('', $debug_array);
echo '';

This example will produce:

query(1): SELECT * FROM people
query(1): SELECT * FROM people WHERE id = 1
query(1): SELECT name FROM people

It's a good idea to reset the debug level to 0 when your application is in production,
so that you don't have the overhead of storing all executed queries in the debug log.

•

•

•

Chapter 1

[23]

MDB2 SQL Abstraction
There are a number of features and items of SQL syntax that are implemented
differently in the various database systems that MDB2 supports. MDB2 does its best
to wrap the differences and provide a single interface for accessing those features, so
that the developer doesn't need to worry about the implementation in the underlying
database system.

Sequences
Auto-increment fields are a convenient way to define and update IDs as primary
keys to your tables. The problem is that not all RDBMS support auto increments. To
address this inconsistency, the concept of sequence tables is used in MDB2. The idea
is that MDB2 will create and maintain a new table (without you having to worry
about it) and will store and increment the last ID, which you can use later when
inserting into in the main table.

Let's assume that the table people, which was used in this chapter's examples, is
empty. Before you insert into this table, you need the next consecutive ID. For this
purpose you call the method nextId() to give you the new ID, like this:

$my_new_id = $mdb2->nextId('people');

Now $my_new_id has the value 1, and behind the scenes MDB2 will create a new
table called people_seq with one field only, called sequence, and one row only,
containing the value 1. The next time you call $mdb2->nextId('people'), MDB2
will increment the value in people_seq and return 2 to you.

sequence
1

You're free to pass any identifier as a parameter when calling nextId(). MDB2 will
append _seq to your identifier and create a new table with that name, if one doesn't
already exist. Unless you have special needs, it helps code readability if you use an
identifier that is the name of the main table you're inserting into.

While sequence is the default name of the field in the sequence table, it can be
overwritten by setting the seqcol_name option, like this:

$mdb2->setOption('seqcol_name', 'id');

Additionally, the name of the sequence table can be customized by setting the
seqname_format option. Its default value is %s_seq, where %s is replaced by the
identifier you pass to nextId().

MDB2

[24]

Setting Limits
In MySQL you can limit the number of records returned by a query by using LIMIT.
For example, the following query will give you only the first two records:

SELECT * FROM people LIMIT 0, 2;

LIMIT is MySQL-specific, so it may be missing from other database systems or
implemented differently. To wrap all the differences and provide a common
interface for limiting results, MDB2 offers the setLimit() method. An example:

$sql = 'SELECT * FROM people';
$mdb2->setLimit(2);
$result = $mdb2->query($sql);

If you want to define an offset (where to start when setting the limit), you specify the
offset value as a second parameter:

$mdb2->setLimit(2, 1);

Note that setLimit() will affect only the next query; any query after that will
behave as usual.

Another way to limit the results is by using the limitQuery() method from the
Extended module. Instead of first setting the limit and then executing the query, you
do it with one method call. To get two records starting from offset 1, write:

$mdb2->loadModule('Extended');
$sql = 'SELECT * FROM people';
$result = $mdb2->limitQuery($sql, null, 2, 1);

Using limitQuery() doesn't affect the queries executed after that and it returns an
MDB2_Result object, just like query().

Replace Queries
MySQL supports the REPLACE statement in addition to UPDATE and INSERT. REPLACE
will update the records that already exist or perform an insert otherwise. Using
REPLACE directly will create portability issues in your application, which is why
MDB2 wraps this functionality in the replace() method. You call replace() by
providing the name of the table and an array of data about the records.

$fields=array ('id' => array ('value' => 6,
 'key' => true
),
 'name' => array ('value' => 'Stoyan'),
 'family' => array ('value' => 'Stefanov'),

Chapter 1

[25]

 'birth_date' => array ('value' => '1975-06-20')
);
$mdb2->replace('people', $fields);

As you can see, the data to be written to the table was set using the value keys. It
was also specified that the id is a key, so that (if using REPLACE directly is not an
option) MDB2 can check if a record with this ID already exists. If you have a key that
consists of several fields, set the 'key' => true index for all of them. Other array
elements you can use are:

type: to specify the MDB2 data type
null: (true or false) to specify whether the null value should be used,
ignoring the content in the value key

The replace() method will return the number of affected rows, just like exec()
does. Technically, the replace operation is an insert if the record doesn't exist or
otherwise a delete and then an insert. Therefore the replace() method will return 1
if the record didn't exist previously or 2 if an existing record was updated.

Sub-Select Support
You can pass an SQL query string to the subSelect() method. In this case, if the
database system supports sub-selects, the result will be the same query unchanged. If
sub-selects are not supported though, the method will execute the query and return
a comma-delimited list of the result values. It is important that the query you pass to
subSelect() returns only one column of results. Example:

// sub-select query string
$sql_ss = 'SELECT id FROM people WHERE id = 1 OR id = 2';
// the main query
$sql = 'SELECT * FROM people WHERE id IN (%s)';
// call subSelect()
$subselect = $mdb2->subSelect($sql_ss);
// update and print the main query
echo $sql = sprintf($sql, $subselect);
// execute
$data = $mdb2->queryAll($sql);

If sub-selects are supported, the echo statement above will output:

SELECT * FROM people WHERE id IN
(SELECT id FROM people WHERE id = 1 OR id = 2)

Otherwise you'll get:

SELECT * FROM people WHERE id IN (1, 2)

•

•

MDB2

[26]

Note that subSelect() is not a full sub-query replacement, it just emulates the so-
called non-correlated sub-queries. This means that your sub-selects and your main
query should be executable as stand-alone queries, so in your sub-query you cannot
refer to results returned by the main query, and vice-versa.

Prepared Statements
Prepared statements are a convenient and security-conscious method of writing to
the database. Again, not all database systems support prepared statements, so MDB2
emulates this functionality when it's not provided natively by the RDBMS. The idea
is to have the following:

A generic query with placeholders instead of real data that is passed to the
prepare() method
Some data about the records to be inserted, updated, or deleted
A call to execute() the prepared statement

The generic query may use unnamed or named placeholders, for example:

$sql = 'INSERT INTO people VALUES (?, ?, ?, ?)';

or

$sql = 'INSERT INTO people VALUES
 (:id, :first_name, :last_name, :bdate)';

Then you call the prepare() method, which gives you an instance of the MDB2_
Statement_* class corresponding to the current database driver you're using:

$statement = $mdb2->prepare($sql);

If you use unnamed parameters (the question marks), you need to have your data as
an ordered array, like:

$data = array(
 $mdb2->nextId('people'), 'Matt', 'Cameron', '1962-11-28'
);

And then you pass the data to the execute() method of the MDB2_Statement class:

$statement->execute($data);

Finally you release the resources taken:

$statement->free();

•

•

•

Chapter 1

[27]

Named Parameters
If you use named parameters in your generic query, you have the convenience of
using associative arrays when supplying data and not worrying about the order of
the parameters as you would in the case of unnamed parameters. The following is a
valid way to set data for a query with named parameters:

$data = array('first_name' => 'Jeff',
 'last_name' => 'Ament',
 'id' => $mdb2->nextId('people'),
 'bdate' => '1963-03-10'
);

Binding Data
Another option for setting the data for a prepared statement is to use the
bindParam() method. Here's an example:

// prepare the statement
$sql = 'INSERT INTO people VALUES
 (:id, :first_name, :last_name, :bdate)';
$statement = $mdb2->prepare($sql);

// figure out the data
$id = $mdb2->nextId('people');
$first_name = 'Kirk';
$last_name = 'Hammett';
$bdate = '1962-11-18';

// bind the data
$statement->bindParam('id', $id);
$statement->bindParam('first_name', $first_name);
$statement->bindParam('last_name', $last_name);
$statement->bindParam('bdate', $bdate);

// execute and free
$statement->execute();
$statement->free();

One thing to note about bindParam() is that it takes a reference to the variable
containing the data. If you're inserting several new records, therefore calling
execute() multiple times, you don't have to call bindParam() for every execute().
Just calling it once and then changing the data variables is enough (in this case $id,
$first_name, $last_name, and $bdate). But if you want to store the actual value
when binding, you can use the method bindValue() instead of bindParam().

MDB2

[28]

Another way to supply data before executing a prepared statement is to use the
bindParamArray() method, which allows you to bind all parameters at once. In the
code from the previous example you can replace the four calls to bindParam() with
one call to bindParamArray():

$array_to_bind = array('id' => $id,
 'first_name' => $first_name,
 'last_name' => $last_name,
 'bdate' => $bdate
);
$statement->bindParamArray($array_to_bind);

Execute Multiple
Once you have prepared a statement, you can insert multiple rows in one shot by
using executeMultiple(). This method is also in the Extended MDB2 module, so
you need to load it first. The data you specify must be in a multidimensional array
where each element at the top level of the array is one record.

$sql = 'INSERT INTO people VALUES (?, ?, ?, ?)';
$statement = $mdb2->prepare($sql);
$data = array(
 array($mdb2->nextId('people'), 'James', 'Hetfield',
 '1969-06-06'),
 array($mdb2->nextId('people'), 'Lars', 'Ulrich',
 '1968-02-02')
);
$mdb2->loadModule('Extended');
$mdb2->executeMultiple($statement, $data);
$statement->free();

Auto Prepare
Instead of writing a generic query and then preparing a statement, you can have
the autoPrepare() method do it for you. You supply only the name of the table,
an array of field names, and the type of the query—insert, update, or delete. If you
do an update or delete, you can also give the WHERE condition as a string or an array
containing different conditions, which MDB2 will concatenate with AND for you. An
insert example would be:

$mdb2->loadModule('Extended');
$table = 'people';
$fields = array('id', 'name', 'family', 'birth_date');
$statement = $mdb2->autoPrepare($table, $fields,
 MDB2_AUTOQUERY_INSERT);

Chapter 1

[29]

This way you'll get an MDB2_Statement object created from a generic query that
looks like this:

INSERT INTO people (id, name, family, birth_date) VALUES (?, ?, ?, ?)

If you want an update statement, you can do something like this:

$mdb2->loadModule('Extended');
$table = 'people';
$fields = array('name', 'family', 'birth_date');
$where = 'id = ?';
$statement = $mdb2->autoPrepare($table, $fields,
 MDB2_AUTOQUERY_UPDATE, $where);

The code above will prepare this type of generic query:

UPDATE people SET name = ?, family = ?, birth_date = ? WHERE id = ?

Internally, autoPrepare() uses the buildManipSQL() method, which basically does
all the work of creating the generic query, but doesn't call prepare() once the query
is built. You might find this method useful in cases when you just need a query and
do not intend to use prepared statements. Here's how you can delete all the records
in the table with last names starting with S and s:

$mdb2->loadModule('Extended');
$sql = $mdb2->buildManipSQL(
 'people',
 false,
 MDB2_AUTOQUERY_DELETE,
 'family like "s%"');
echo $mdb2->exec($sql);

Auto Execute
The autoExecute() method is similar to autoPrepare() but it also executes the
prepared statement. The difference in the parameters passed is that the array of
fields should be an associative array containing bothe the field names and the data to
be inserted or updated.

$mdb2->loadModule('Extended');
$table = 'people';
$fields = array ('id' => $mdb2->nextId('people'),
 'name' => 'Cliff',
 'family' => 'Burton',
 'birth_date' => '1962-02-10'
);
$result = $mdb2->autoExecute($table, $fields, MDB2_AUTOQUERY_INSERT);

MDB2

[30]

Transactions
If transactions are supported by your RDBMS, using them is very good practice
to keep your data in a consistent state, should an error occur in the middle of the
process of writing several pieces of data to one or more tables.

You begin by checking whether transactions are supported by your RDBMS and then
you initiate a new transaction with a call to beginTransaction(). Then you start
executing the different queries that comprise your transaction. After every query
you can check the result and if you find it's a PEAR_Error, you can roll back (undo)
the transaction and all previously executed queries within it. Otherwise you commit
(finalize) the transaction. Before the calls to rollback() or commit(), you need to
check if you really are in transaction, using the inTransaction() method.

if ($mdb2->supports('transactions'))
{
 $mdb2->beginTransaction();
}
$result = $mdb2->exec('DELETE FROM people WHERE id = 33');
if (PEAR::isError($result))
{
 if ($mdb2->inTransaction())
 {
 $mdb2->rollback();
 }
}
$result = $mdb2->exec('DELETE FROM people WHERE id =
 invalid something');
if (PEAR::isError($result))
{
 if ($mdb2->inTransaction())
 {
 $mdb2->rollback();
 }
}
elseif ($mdb2->inTransaction())
{
 $mdb2->commit();
}

Note that if transactions are not supported by your RDBMS, MDB2 will not emulate
this functionality, so it is your responsibility to keep the data in a consistent state.

Chapter 1

[31]

MDB2 Modules
When looking at some of the examples earlier in this chapter, you've already seen
how the idea of modularity is built into MDB2. The main purpose is to keep the base
functionality lightweight and then include more functionality on demand, using the
loadModule() method.

Earlier in the chapter, the Extended module was loaded like this:

$mdb2->loadModule('Extended');

After this call you have access to all the methods that the Extended module provides,
such as all the get*() methods. The methods are accessible through the extended
property of the $mdb2 instance:

$mdb2->extended->getAssoc($sql);

In addition to that, in PHP5, due to the object overloading functionality, you can
access the methods directly as methods of the $mdb2 instance:

$mdb2->getAssoc($sql);

In this chapter PHP5 was assumed, so all the calls to the module methods benefit
from object overloading and are called using this short notation.

Yet another way to access the module's methods is by prefixing them with the short
name of the module ex (for "Extended"). This is also PHP5-only.

$mdb2->exGetAssoc($sql);

And finally, you can specify a custom property name to load the module into (works
in both PHP 4 and 5):

$mdb2->loadModule('Extended', 'mine');
$mdb2->mine->getAssoc($sql);

The full list of currently available MDB2 modules is as follows (short access names
given in brackets):

Extended (ex): You already have an idea of some of the methods available in
the Extended module. This module is the only one unrelated to the different
database drivers and its definition file (Extended.php) lies in the root MDB2
directory, not in the Drivers directory. This module is defined in the MDB2_
Extended class, which inherits the MDB2_Module_Common class.
Datatype (dt): Contains methods for manipulating and converting MDB2 data
types and mapping them to types that are native to the underlying database.

•

•

MDB2

[32]

Manager (mg): Contains methods for managing the database structure
(schema), like creating, listing, or dropping databases, tables, indices, etc.
Reverse (rv): Methods for reverse engineering a database structure.
Native (na): Any methods that are native to the underlying database are
placed here.
Function (fc): Contains wrappers for useful functions that are implemented
differently in the different databases.

Let's see a few examples that use some of the modules.

Manager Module
Using the Manager module you have access to methods for managing your database
schema. Let's see some of its methods in action.

Create a Database
Here's an example that will create a new blank database:

$mdb2->loadModule('Manager');
$mdb2->createDatabase('test_db');

Create a Table
You can use the Manager module to recreate the table people that was used in the
earlier examples in this chapter. This table had four fields:

id: An unsigned integer primary key that cannot be null
name: A text field, like VARCHAR(255) in MySQL
family: Same type as name
birth_date: A date field

To create this table you use the createTable() method, to which you pass the table
name and an array containing the table definition.

$definition = array ('id' => array ('type' => 'integer',
 'unsigned' => 1,
 'notnull' => 1,
 'default' => 0,
),
 'name' => array ('type' => 'text',
 'length' => 255
),
 'family' => array ('type' => 'text',

•

•

•

•

•

•

•

•

Chapter 1

[33]

 'length' => 255
),
 'birth_date' => array ('type' => 'date'
)
);
$mdb2->createTable('people', $definition);

Alter Table
Let's say that after the table was created, you decide that 255 characters are too
much for one name. In this case you'll need to set up a new definition array and call
alterTable(). The new definition array used for modifications is broken down into
the following keys:

name: New name for the table
add: New fields to be added
remove: Fields to be dropped
rename: Fields to rename
change: Fields to modify

Here's how to modify the name field to store only a hundred characters:

$definition = array(
 'change' => array(
 'name' => array(
 'definition' => array(
 'length' => 100,
 'type' => 'text',
)
),
)
);
$mdb2->alterTable('people', $definition, false);

If you set the third parameter of alterTable() to true, MDB2 will not execute the
changes, but will only check if they are supported by your DBMS.

Constraints
The id field was meant to be the primary key, but so far it isn't. For this purpose you
can use the createConstraint() method, which accepts the table name, the name
we chose for the constraint, and the array containing the constraint definition.

$definition = array ('primary' => true,
 'fields' => array ('id' => array())

•

•

•

•

•

MDB2

[34]

);
$mdb2->createConstraint('people', 'myprimekey', $definition);

Note that MySQL will ignore the myprimekey name of the
constraint, because it requires the primary key to always be
named PRIMARY.

Now we can specify that the name plus the family name should be unique:

$definition = array('unique' => true,
 'fields' => array('name' => array(),
 'family' => array(),
)
);
$mdb2->createConstraint('people', 'unique_people',
 $definition);

On second thoughts, different people sometimes have the same names, so let's drop
this constraint:

$mdb2->dropConstraint('people', 'unique_people');

Indices
If there will be a lot of SELECTs on the birth_date field, you can speed them up by
creating index on this field.

$definition = array('fields' => array('birth_date' => array(),));
$mdb2->createIndex('people', 'dates', $definition);

Note that by default MDB2 will add a _idx suffix to all your indices and constraints.
If you want to modify this behavior, set the idxname_format option:

$mdb2->setOption('idxname_format', '%s'); // no suffix

Listings
In the Manager module you have also a lot of methods to get information
about a database, such as listDatabases(), listUsers(), listTables(),
listTableViews(), and listTableFields().

Chapter 1

[35]

Function Module
The Function module contains some methods to access common database functions,
such as referring to the current timestamp, and concatenating or getting partial
strings. If you want to access the current timestamp in your statements, you can use
the now() method and it will return you the means to get the timestamp in a way
that is native for the currently underlying database system.

$mdb2->loadModule('Function');
echo $mdb2->now();

This will output CURRENT_TIMESTAMP when using MySQL and datetime('now')
when using SQLite.

now() accepts a string parameter (with values date, time, and timestamp) that
specifies if you want the current date, time, or both.

If you wish to concatenate strings in your statements in a database-agnostic way, you
can use the concat() method and pass an unlimited number of string parameters to
it. For extracting substrings, you have the substring() method. Here's an example
that uses both methods:

$mdb2->loadModule('Function');
$sql = 'SELECT %s FROM people';
$first_initial = $mdb2->substring('name', 1, 1);
$dot = $mdb2->quote('.');
$all = $mdb2->concat($first_initial, $dot, 'family');
$sql = sprintf($sql, $all);
$data = $mdb2->queryCol($sql);

echo $sql;
print_r($data);

The print_r() from this code will produce:

Array (
 [0] => E.Vedder
 [1] => M.McCready
 [2] => S.Gossard
...
)

The echo $sql; line will print a different result, depending on the database driver
you use. For MySQL it would be:

SELECT CONCAT(SUBSTRING(name FROM 1 FOR 1), '.', family) FROM people

MDB2

[36]

Using the Oracle (oci8) driver, you'll get:

SELECT (SUBSTR(name, 1, 1) || '.' || family) FROM people

In this example only the first character from the value in the name field was extracted.
Then it was concatenated with the dot symbol and the full value of the family field.
Note that it was necessary to quote the dot in order for it to be treated as a string and
not a field name.

Reverse Module
If you want to get information about the table people that was used in the examples
in this chapter, you can call the tableInfo() method:

$mdb2->loadModule('Reverse');
$data = $mdb2->tableInfo('people');

If you print_r() the result, you'll get something like:

Array([0] => Array ([table] => people
 [name] => id
 [type] => int
 [length] => 11
 [flags] => not_null primary_key
 [mdb2type] => integer
)
 [1] => Array ([table] => people
 [name] => name
 [type] => char
 [length] => 100
 [flags] =>
 [mdb2type] => text
)
 ...
)

The real magic about the tableInfo() method is that it can return information on
the fields based on a query result, not just a table. Let's say you have one more table
phones in your database that stores phone numbers of the people from the people
table and it looks like this:

id person_id Phone
1 1 555-666-7777
2 1 555-666-7788

Chapter 1

[37]

You can execute a query that joins the two tables and when you get the result, you can
pass it to tableInfo():

$mdb2->loadModule('Reverse');

$sql = 'SELECT phones.id, people.name, phones.phone ';
$sql.= ' FROM people ';
$sql.= ' LEFT JOIN phones ';
$sql.= ' ON people.id = phones.person_id ';

$result = $mdb2->query($sql);
$data = $mdb2->tableInfo($result);

Now if you print_r() what tableInfo() returns, you'll get an array that describes
the three fields selected in the JOIN statement—id, name, and phone:

Array (
 [0] => Array ([table] => phones
 [name] => id
 [type] => int
 [length] => 11
 [flags] => primary_key
 [mdb2type] => integer
)
 [1] => Array ([table] => people
 [name] => name
 [type] => char
 [length] => 100
 [flags] =>
 [mdb2type] => text
)
 [2] => Array ([table] => phones
 [name] => phone
 [type] => char
 [length] => 20
 [flags] =>
 [mdb2type] => text
)
)

Extending MDB2
MDB2 is easy to tweak by playing with its numerous setup options, but it's also
highly extensible. For example, you can wrap the query results in your custom
classes, when you execute a query or fetch data. You can create your own debug
handler, provide your own Iterator implementation, and finally, you can add new

MDB2

[38]

functionality to the package by creating new modules in addition to the existing
ones. In this section you'll see the necessary steps for creating custom functionality.

Custom Debug Handler
You already know that you can set the debug option to a positive integer like this:

$mdb2->setOption('debug', 1);

Then at any time you can get a list of executed queries like this:

$mdb2->getDebugOutput();

You can provide your own custom debug handler to collect the list of queries.
The debug handler can be a function or a class method—basically anything that
qualifies as a valid PHP callback pseudo-type (http://php.net/callback). Let's
create a new class that will be responsible for collecting debug information and then
printing it. The custom functionality in this example will be that our data collection
will keep a running counter of how many times each query has been executed. This
can be useful when you do performance testing on a larger application. Often in an
application you put small pieces of functionality in different classes and methods
and then simply call these methods when you need them, without worrying how
exactly they work, which is the beauty of OOP. So it may happen that some methods
that do database work are called more often then you thought and perform repeating
tasks. Using the custom debugger in the following example, you can identify and
optimize such cases.

class Custom_Debug_Class
{
 // how many queries were executed
 var $query_count = 0;
 // which queries and their count
 var $queries = array();

 // this method is called on every query
 function collectInfo(&$db, $scope, $message, $is_manip =
 null)
 {
 $this->query_count++;
 @$this->queries[$message]++;
 }

 // print the log
 function dumpInfo()
 {

Chapter 1

[39]

 echo 'Total queries in this page: ';
 echo $this->query_count;
 // sort descending
 arsort($this->queries);
 echo '<pre>';
 print_r($this->queries);
 echo '</pre>';
 }
}

To see the custom debug handler in action, you need to instantiate the newly created
class, set the MBD2 debug handler callback, execute a few queries (one of them is
executed twice), and then print the results.

$my_debug_handler = new Custom_Debug_Class();
$mdb2->setOption('debug', 1);
$mdb2->setOption('debug_handler', array($my_debug_handler,
 'collectInfo'));
$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);
$sql = 'SELECT * FROM people WHERE id = 1';
$result = $mdb2->query($sql);
$my_debug_handler->dumpInfo();

The result of this will be:

Total queries in this page: 3

Array

(

 [SELECT * FROM people]=>2

 [SELECT * FROM people WHERE id = 1]=>1

)

During the development phase of your application you can even register
dumpInfo() to be called automatically at the end of each script using:

register_shutdown_function(array($my_debug_handler,
 'dumpInfo'));

Here's an idea for monitoring performance in your application's MySQL queries
with MDB2's help. You can create (and register to be executed on a script shutdown)

MDB2

[40]

a new method in your custom debug class that will take only the SELECT queries
and re-run them by prefixing them with the EXPLAIN statement. Then you can do
some automated checks to find suspicious queries that are not using appropriate
indices. You can find more on the EXPLAIN statement at http://dev.mysql.com/
doc/refman/5.0/en/explain.html.

Custom Fetch Classes
As you know already, you can have different fetch modes when you retrieve the
data from a query result—associative array, ordered list, or object. When you use the
object fetch mode (MDB2_FETCHMODE_OBJECT), an instance of PHP's standard class
(stdClass) is created for every row (by simply casting the array result to an object).
This allows you to access the field data as object properties, for example $row->name
or $row->id.

MDB2 gives you the means to customize this functionality by providing your
own custom fetch class. Every row in the result set will be passed as an array to
the constructor of the custom class. Let's create a simple class that mimics what
stdClass will give you, only it converts the field with name id to an integer.

class My_Fetch_Class
{
 function __construct($row)
 {
 foreach ($row as $field => $data)
 {
 if ($field == 'id')
 {
 $data = (int)$data;
 }
 $this->{$field} = $data;
 }
 }
}

To test the class, you need to set the fetch mode to MDB2_FETCHMODE_OBJECT, and the
option fetch_class to be the name of the new class.

$mdb2->setFetchMode(MDB2_FETCHMODE_OBJECT);
$mdb2->setOption('fetch_class', 'My_Fetch_Class');

The same result can be achieved directly with the call to setFetchMode().

$mdb2->setFetchMode(MDB2_FETCHMODE_OBJECT, 'My_Fetch_Class');

Chapter 1

[41]

If you execute a query like this:

$sql = 'SELECT * FROM people WHERE id=1';
$data = $mdb2->queryRow($sql);

and then var_dump() the result, you'll get:

object(My_Fetch_Class)#3 (2)
{
 ["id"]=>
 int(1)
 ["name"]=>
 string(5) "Eddie"
 ...
}

Also note that in the core MDB2 package there exists a class called MDB2_Row that
does pretty much what the custom class example above does, only it doesn't convert
fields named id to an integer. If you make your custom fetch classes extend MDB2_
Row, you can benefit from what it provides and build upon it.

Custom Result Classes
As you know already, once you execute an SQL statement with query(), you get an
object of the appropriate MDB2_Result class. If you're using MySQL, the result class
would be MDB2_Result_mysql and it will extend the common functionality provided
by MDB2_Result_Common, which in turn extends MDB2_Result. MDB2 provides
you the means to extend and customize the result classes, in other words replace or
extend MDB2_Result_* with your own classes.

What you need to do is:

Create your custom result class
Make sure its definition is included
Pass its name as an MDB2 option

Let's create a class called MyResult and make it extend the out-of-the-box MDB2_
Result_mysql class, so that you can benefit from the existing functionality. To this
class, let's add a simple method that demonstrates the feature:

class MyResult extends MDB2_Result_mysql
{
 function newResultMethod()
 {
 echo 'I am MyResult::newResultMethod()';

•

•

•

MDB2

[42]

 // $this->db is your current MDB2 instance
 // in case you need it
 }
}

Then, to make this class available when executing queries, let’s pass its name as
an option:

$mdb2->setOption('buffered_result_class', 'MyResult');

Now you can execute a query and call the new custom method on its result:

$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql);
$result->newResultMethod();

As you saw above, the option buffered_result_class was set. This is because the
default behavior for MDB2 is to use buffered queries. You can change this by setting:

$mdb2->setOption('result_buffering', false);

In this case, when you're working with unbuffered results, if you want to use the
custom result class, you will need to set the result_class option, as opposed to the
buffered_result_class one:

$mdb2->setOption('result_class', 'MyResult');

If you want to create custom result classes that are database-specific, you can postfix
their names with the name of the MDB2 database driver (for example MyResult_
mysql) and you can use a placeholder for the driver name when setting the custom
class option:

$mdb2->setOption('result_class', 'MyResult_%s');

MDB2 will replace the %s placeholder with the name of the database driver used for
the current MDB2 instance.

Let's take a look at another, slightly more advanced example. The idea is to create
a new method in the custom result class that will calculate the average age of the
people matched by any query. Here's the code for the new custom class—MyResult2.

class MyResult2 extends MDB2_BufferedResult_mysql
{
 function getAverageAge()
 {
 $current_row = $this->rowCount(); // where are we
 $this->seek(); // rewind
 $total_ts = 0; // sum of all birth date timestamps

Chapter 1

[43]

 while ($row = $this->fetchRow(MDB2_FETCHMODE_ASSOC))
 {
 $total_ts += strtotime($row['birth_date']);
 }
 $avg_ts = $total_ts / $this->numRows();
 // average timestamp
 $age = date('Y') - date('Y', $avg_ts);
 if (date('md') < date('md', $avg_ts))
 {
 $age--; // not a birth day yet
 }
 $this->seek($current_row); // back to where we were
 return $age;
 }
}

To use a custom result class with a query, apart from the possibility of specifying
the class name as an MDB2 option, you can also specify it per query, as the third
parameter of the query() method. This way you can use the default result class for
most of your queries, but overwrite it only for selected ones. So to use the new class
you can write:

$sql = 'SELECT * FROM people';
// or maybe --> $sql = 'SELECT * FROM people WHERE name
// LIKE "J%"';
$result = $mdb2->query($sql, null, 'MyResult2');
echo $result->getAverageAge();

In the implementation of the getAverageAge() method you can see that $this
refers to the result object. First, the method starts with getting the result set pointer
position by calling $this->rowCount(). Then there is a call to seek() to move to the
beginning of the result set. Before the method returns, it seeks back to the point in
the result set before the method call. This is useful because it lets you navigate back
and forth through the result set before calling getAverageAge() without affecting
the functionality. Otherwise, if you've already fetched a few rows before calling
getAverageAge(), the pointer to the current row is already advanced and you'll
get partial results. Once the record set is reset, we simply fetch all records, sum the
timestamps of all birth dates, and perform some date operations to get the average
age. Note that MyResult2 class extends the buffered built-in class, otherwise it cannot
access the seek() and numRow() methods.

MDB2

[44]

Custom Iterators
As you know already, MDB2 comes with two implementations of PHP5's SPL
Iterator interface— MDB2_Iterator and MDB2_BufferedIterator. It probably
won't come as a surprise that you can also use your own Iterator implementations.
In the next example a simple My_Iterator class is created. It builds upon the MDB2_
BufferedIterator implementation.

// load MDB2 iterators
MDB2::loadFile('Iterator');
// custom iterator class
class My_Iterator extends MDB2_BufferedIterator
{
 function foo()
 {
 echo 'bar';
 }
}
// execute query
$sql = 'SELECT * FROM people';
$result = $mdb2->query($sql, null, true, 'My_Iterator');
// iterate over the result set
foreach ($result as $row)
{
 var_dump($row);
}
// call the custom method
$result->foo();

Custom Modules
If all the possibilities for customizations are not enough for you and you're looking
for some completely missing functionality, you can create a new MDB2 module,
on top of the six existing ones (Extended, Manager, Reverse, Function, Datatype,
and Native). This would be a custom extension of the core MDB2, but it can still
be included using the same loadModule() method and behaves as if it is a part of
MDB2. Here are the necessary steps to build and use a module.

First, create the class, prefixed with MDB2_. In this case let's pick Mymodule as the
name of the custom extension.

class MDB2_Mymodule
{
 function sayHi()
 {

Chapter 1

[45]

 echo "OK, hi!";
 }
}

Then place this class in a file named after the module name, Mymodule.php, and
copy it where MDB2::loadModule() will be looking for it—a directory called
MDB2 somewhere in your include path. You can also put this file in the core MDB2
directory of your PEAR installation, but it's probably a good idea to keep the PEAR
directory managed only by the PEAR installer. To keep things simple, let's say the
MDB2 directory you create is a subdirectory in the same directory as the script that
will use the new module.

Then in the test script simply load the module like any built-in MDB2 module and
call its method:

$mdb2->loadModule('Mymodule');
$mdb2->sayHi();

Voilà! You've created and tested the custom module.! You've created and tested the custom module.

Mymodule2
Usually in your custom module you would need more functionality that just echo-
ing. Most likely you'll need access to the current MDB2 instance. Here is a second
example that extends the MDB2_Module_Common class and gets a reference to the
current MDB2 object (through the call to getDBInstance()) in order to perform a
database operation—counting the rows in a given table.

class MDB2_Mymodule2 extends MDB2_Module_Common
{
 function getNumberOfRecords($table)
 {
 $mdb2 =& $this->getDBInstance();
 $sql = 'SELECT count(*) FROM '
 . $mdb2->quoteIdentifier($table);
 $count = $mdb2->queryOne($sql);
 return $count;
 }
}

If you place this code in a file called Mymodule2.php in your MDB2 directory, you
can then test it:

$mdb2->loadModule('Mymodule2');
echo $mdb2->getNumberOfRecords('people');

MDB2

[46]

MDB2_Schema
MDB2_Schema is a separate PEAR package that builds upon MDB2 to provide tools
to manage your database schema using a platform- and database-independent XML
format. The XML format is inherited form the Metabase package and is very simple
to read and understand; it actually uses only a subset of what XML offers, known
as SML (Simplified Markup Language). You can find a detailed description of the
Metabase format in the docs folder of your PEAR installation, in a file called xml_
schema_documentation.html. You can also read it directly from the PEAR CVS
repository at http://cvs.php.net/viewcvs.cgi/pear/MDB2_Schema/docs/.

MDB2_Schema offers quite a few methods to help you manage your database
structure and keep track of the changes you inevitably make during the life of your
application. Let's take a look at some examples.

Installation and Instantiation
Since MDB2_Schema is a separate package, it needs to be installed separately. To do
so, type:

> pear install MDB2_Schema

To create an instance of the Schema class, you have connect() and factory()
methods that accept a DSN and an options array, just like MDB2 does. Another
option is to create a Schema object using an existing MDB2 object, if you have one
at hand.

require_once 'MDB2.php';
require_once 'MDB2/Schema.php';

$dsn = 'mysql://root@localhost/test_db';
$options = array('debug' => 0,);
$mdb2 =& MDB2::factory($dsn, $options);
$mdb2->setFetchMode(MDB2_FETCHMODE_ASSOC);

$schema =& MDB2_Schema::factory($mdb2);

Dump a Database
If you want to copy your database to a file that uses the Metabase XML format, you
can use the dumpDatabase() method. It accepts a database definition array that looks
similar to the definition arrays you saw earlier in the chapter when looking into the
Manager module. If you don't have the definition array, you can have Schema guess
the database definition for you, using the getDefinitionFromDatabase() method.
Here's the code to do so, assuming you already have a Schema object:

Chapter 1

[47]

$definition = $schema->getDefinitionFromDatabase();
$dump_options = array ('output_mode' => 'file',
 'output' => 'test.xml'
);
$schema->dumpDatabase($definition, $dump_options,
 MDB2_SCHEMA_DUMP_STRUCTURE);

If you execute this code on the test_db database that was created earlier and
had one people table, and then you print_r() the $definition array, you'll get
something similar to this (partial listing):

Array
(
 [name] => test_db
 [create] => 1
 [overwrite] =>
 [tables] => Array
 (
 [people] => Array
 (
 [fields] => Array
 (
 [id] => Array ([type] => integer
 [notnull] => 1
 [length] => 4
 [unsigned] => 1
 [default] => 0
)
 [name] => Array ([type] => text
 [notnull] =>
 [length] => 100
 [fixed] =>
 [default] =>
)
 ...
)

 [indexes] => Array (...)
)
)
 [sequences] => Array
 (
)
)

MDB2

[48]

The code overleaf will also create a file test.xml (in the directory where the script is)
with the following content (again, a partial listing with some empty lines removed):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<database>
 <name>test_db</name>
 <create>true</create>
 <overwrite>false</overwrite>

 <table>
 <name>people</name>
 <declaration>
 <field>
 <name>id</name>
 <type>integer</type>
 <unsigned>true</unsigned>
 <length>4</length>
 <notnull>true</notnull>
 <default>0</default>
 </field>

 <field>
 <name>name</name>
 <type>text</type>
 <length>100</length>
 <notnull>false</notnull>
 <default></default>
 </field>

 ...

 <index>
 ...
 </index>
 </declaration>
 </table>
</database>

The test.xml file was created because this was specified in the $dump_options
array that was passed to the dumpDatabase() method. If you don't want to write
the XML file to the file system but you need it for other purposes, you can skip the
$dump_options['output_mode'] key and then provide a function name in $dump_
options['output']. In this case, the XML result will be passed as a string to the
function you specify. So if you just want to see the dump in your browser, you can
create a simple function like this:

Chapter 1

[49]

function printXml($input)
{
 echo '<pre>';
 print_r(htmlentities($input));
 echo '</pre>';
}

Then you can set the $dump_options array:

$dump_options = array ('output' => 'printXml');

The third parameter to dumpDatabase() tells the method what you want dumped—
the structure, the data in the tables, or both. This is defined with a constant where the
available options are:

MDB2_SCHEMA_DUMP_STRUCTURE

MDB2_SCHEMA_DUMP_CONTENT

MDB2_SCHEMA_DUMP_ALL

As the API docs say, the
getDefinitionFromDatabase() method is an attempt
to figure out the definition directly from the database and
sometimes it may require some manual work to make the
definition exactly as you want.

Switching your RDBMS
Suppose you decide to move your application from using a MySQL database back
end to SQLite (or simply want to test how portable your application is). You can
have MDB2_Schema do the database structure and data transition for you. Let's say
you've created your database dump as shown above and you have your test.xml
file. All you need now is a new DSN to connect to SQLite, one method call to parse
the XML file and extract the database definition from it, and a method call to create
the new database.

$dsn2 = 'sqlite:///';
$schema2 =& MDB2_Schema::factory($dsn2);
$definition = $schema2->parseDatabaseDefinitionFile('test.xml');
$schema2->createDatabase($definition);

•

•

•

MDB2

[50]

For this simple type of transition you don't necessary need the XML file, and can
work with only the database definition array. The whole transition can be done in
one line, assuming you have your two Schema instances ready:

$schema2->createDatabase($schema->getDefinitionFromDatabase());

Summary
In this chapter you were presented with an introduction to the MDB2 database
abstraction layer. You saw the challenges faced with database abstraction and how
they are handled in MDB2. You learned how to install MDB2, instantiate an MDB2
object, and use some of the most common methods. You also learned how MDB2 is
built with extensibility in mind and about the existing modules. There were also a
few examples of how you can customize the package by using your custom classes
for some tasks and how to create your own extensions. Finally, there was a
quick example of how to use MDB2_Schema for managing your database in an
RDBMS-independent way.

Displaying Data
One of the primary uses of the Internet is the presentation of data. Whether you are
listing your friends' birthdays on your personal website, creating an administration
interface for a web portal, or presenting a complex spreadsheet to your boss, what
it comes down to is pulling the data out of a source, processing the data, and then
formatting it in whichever format you need.

When it comes to creating and formatting data, many programmers have
implemented their own scripts or classes to solve the same basic problems. There
are many different ways to do this, but unfortunately many of the common
implementations are either wrong or inefficient. In an attempt to solve a specific
problem, programmers often create a half-baked solution and then move on to
other things, leaving what could have been good code incomplete and potentially
vulnerable to security or performance issues.

Thankfully PEAR provides several different packages that take care of different
aspects of data presentation, and not only take the drudgery of formatting out of the
picture, but also allow programmers to expand their scripts to support many formats
they would not have been able to use and support before.

In this chapter we'll take a look at data you are familiar with. We will learn how
to create simple tables and a monthly calendar, generate a spreadsheet and PDF
document, and how to create a flexible DataGrid that uses a combination of these
classes to import and export data.

HTML Tables
Of all HTML elements, the humble table is probably the most misunderstood. Initially
designed as a way to display tabular data, designers soon discovered that it could
also be used as a container for complex layouts. Soon it became common practice to
see hideous techniques such as using an obscene number of complex nested tables
to display something as simple as a border to a block of text, or using "spacer gifs"

Displaying Data

[52]

to limit the width of table cells.. The backlash by many designers and coders was to
pride themselves in the fact that their web pages contained absolutely no tables, and
they refused to use a table even for the most legitimate of uses.

We will put all preconceived ideas about tables behind us now and focus on using
tables for the simple task for which they were originally designed, which was
displaying tabular data.

Table Format
The format of creating tables in HTML is very simple. The top-level tag is <table>,
to which table-wide attributes can be added. The individual rows of the table are
defined by <tr> tags. Within the rows of the table reside the cells. The cells can either
be data cells (enclosed with <td> tags) or header cells (enclosed in <th> tags). These
elements form the basis of a table as shown in the code example below.

<table>
 <tr>
 <th>Header One</th>
 <th>Header Two</th>
 <th>Header Three</th>
 </tr>
 <tr>
 <td>Cell Four</td>
 <td>Cell Five</td>
 <td>Cell Six</td>
 </tr>
</table>

As you can see from a quick look at the above code, manually creating HTML
tables can be very tedious. Even working with PHP and looping through your
data to create the table quickly becomes messy, as we have to deal with the HTML
tags directly, calculate when to close tags, etc. In these cases the HTML_Table
package comes in very handy as an object-oriented wrapper for the creation and
manipulation of HTML tables.

Using the HTML_Table package we could create this table very simply:

include_once 'HTML/Table.php';
$table = new HTML_Table();

$table->addRow(array("one", "two", "three"), null, "th");
$table->addRow(array("one", "two", "three"));

echo $table->toHtml();

Chapter 2

[53]

We start out by creating a new instance of the HTML_Table class. To use table-wide
attributes we can send them to the class constructor; we will look at this later. Once
we have our table object, we can start adding rows to our table. The first parameter
of the addRow() function is an array that contains the data you want to store, the
second parameter allows you to specify any attributes for the row that is created,
and the third attribute defines whether or not these cells should use the header cell
tag. We want the first row to be a header row using the <th> tags, and the rest of the
rows to use the regular table cells.

Using HTML_Table to Create a Simple
Calendar
Now that we've seen the basics of what HTML_Table can do, we'll jump into a
real-world example.

We will start off by developing a simple monthly calendar. Our calendar will have a
month view and will display weeks and days in a tabular format. We will add more
features later in this section, but for now we will use PEAR::Calendar and
HTML_Table to build the calendar for the current month.

include_once 'HTML/Table.php';
include_once 'Calendar/Month/Weekdays.php';

$table = new HTML_Table();

$Month = new Calendar_Month_Weekdays(date('Y'), date('n'));
$Month->build();

while ($Day = $Month->fetch())
{
 if ($Day->isFirst())
 {
 if (is_array($week))
 {
 $table->addRow($week);
 }
 $week = array();
 }

 $week[] = $Day->isEmpty() ? "" : $Day->thisDay();
}

$table->addRow($week);

Displaying Data

[54]

$table->setColAttributes(0, 'bgcolor="#CCCCCC"');
$table->setColAttributes(6, 'bgcolor="#CCCCff"');
$table->updateAllAttributes('align="center"');

echo $table->toHTML();

After including the needed packages we instantiate a new instance of the HTML_
Table class. If we wanted to give this table a border or apply any other attribute to
the table, we could send this attribute to the constructor of HTML_Table. This will be
described in the next example.

The usage of the Calendar class from PEAR is beyond the scope of this chapter. Put
simply, we create a new object that contains the information for the current month
and then iterate through the days, handling each day individually. We add each day
to an array and then when we reach the first day of the week, we add the previous
week to the table and empty the array for the next week. There will be some days of
the week that do not belong to the present month; these are empty days and we do
not include them in the calendar. Once we are finished looping through the weeks,
we add the last week to our table.

Now that we have all of our data added to our table, we can add and update the
attributes of our rows and columns to add some formatting elements. HTML_Table
offers functions for setting the attributes of rows, columns, or individual cells.
These functions are named setRowAttributes(), setColAttributes(), and
setCellAttributes() respectively. When setting the attributes of parts of your
table, remember that a cell that is set will have its formatting overwritten if you use
the setRowAttribute() function on a row of which that cell is a part. To get around
this, you can call the "update" functions to update attributes of a cell. In this example,
once the colors have been added, we update all the cells in the table to be centered.
This does not affect any previous formatting that has been applied.

Setting Individual Cells
As luck would have it, as soon as we complete our sample calendar, someone in
upper management suggests that we enhance the calendar to not just highlight the
weekends, but any other holiday occurring in the month.

For this we will need more granular access to our table, so instead of adding weeks
to the table we will need to add each day on its own. This will require a redesign of
how we enter data into the table.

To get the data on the holidays in the month, we will use the Date_Holidays package
from PEAR. As we loop through the days of the month, we check to see if the current
day is a holiday and, if it is, apply the appropriate formatting to the cell. If we were
using this calendar in a real application you would probably want to add the name

Chapter 2

[55]

of the holiday, which Date_Holidays provides, but for the sake of this example we'll
just highlight the cell.

require_once 'HTML/Table.php';
require_once 'Calendar/Month/Weekdays.php';
require_once 'Date/Holidays.php';

$tableAttrs = array('border' => "2");
$table = new HTML_Table($tableAttrs);

$Germany =& Date_Holidays::factory('Germany', 2005);
$Month = new Calendar_Month_Weekdays(2005, 12);
$Month->build();

$table->addRow(array('S', 'M', 'T', 'W', 'T', 'F', 'S'),
 null, "th");

while ($Day = $Month->fetch())
{
 if ($Day->isFirst())
 {
 $row++;
 $col = 0;
 }

 if (!$Day->isEmpty())
 {

 $table->setCellContents($row, $col, $Day->thisDay());
 $t = sprintf('%4d-%02d-%02d', $Day->thisYear(),
 $Day- >thisMonth(), $Day->thisDay());

 if ($Germany->isHoliday($t))
 {
 $table->setCellAttributes($row,$col, 'bgcolor="red"');
 }
 }
 $col++;
}

$table->setRowAttributes(0, 'bgcolor="#CC99FF"');

$table->updateAllAttributes('align="center"');
$table->setCaption("Holidays");

echo $table->toHTML();

Displaying Data

[56]

The first change you'll notice is the addition of the border attributes when creating
the table. This will add the border attribute to the main table tag.

We have used several new functions in this example. The most important is the
setCellContents() function. True to its name, this function requires the row and
column number of a cell and then fills the cell with the supplied data. We also add
a header row to display the days of the week, highlight it, and add a caption for
the table.

Our completed calendar now displays the current month with the holidays
highlighted in red.

Extended HTML_Table with HTML_Table_Matrix
The HTML_Table_Matrix (HTM) package is a sub-package of HTML_Table and
extends it to enable the easy formatting of data in a tabular layout. The main benefit
of using HTM is that instead of having to fill each row using the addRow() function,
you can simply specify how many rows and columns you want in your table and
then drop in your array of data and let HTML_Table_Matrix sort everything out.

HTML_Table_Matrix is designed using Filler drivers that handle the order in which
your data appears in the table. Fillers currently support filling your table in a natural
left-right, top-bottom format, as well as bottom-top or right-left, spiraling outwards
in a counter-clockwise fashion, etc.

The Filler simply provides a next() method that the rendering class uses to
determine where the next piece of data will be placed. While it's unlikely that
you will choose to render a table from the center cell out, a flexible mechanism is
provided, which should be able to handle any future needs. The data store itself is
only queried once.

In this example, we use the Services_Yahoo package to fetch the top sixteen images
from Yahoo Image Search and display them in a table.

include_once 'HTML/Table/Matrix.php';
include_once 'Services/Yahoo/Search.php';

Chapter 2

[57]

$table = new HTML_Table_Matrix(array('border' => "2"));

$rows = 4;
$cols = 4;
$term = 'Pears';

$search = Services_Yahoo_Search::factory("image");
$search->setQuery($term);
$search->setResultNumber($rows * $cols);

$results = $search->submit();
foreach($results as $image)
{
 $data[] = "Url}' />";
}

$table->setTableSize($rows, $cols);
$table->setFillStart(1, 0);
$table->setData($data);

$table->addRow(array("Search for the term '$term'"),
 "colspan='$cols'", "th");

$f = HTML_Table_Matrix_Filler::factory("LRTB", $table);

$table->accept($f);
echo $table->toHtml();

After including both the packages we are using in this example, we set a couple of
variables to hold information about our search. We want a table with four rows and
four columns to hold the images found when searching for the term 'Pears'. Once we
have received the query data back from Yahoo, we define the size of our table based
on the predefined variables. We want to add a header, so we start filling the table one
row from the top of the table; this is done using the setFillStart() function.

HTML_Table_Matrix is a sub-package of HTML_Table, so while the setData method
exists for adding data en masse, we can still manipulate the table or individual rows
and cells, which is what we do to add the header row.

When we instantiate the Filler package we supply the table object as well as the driver
to be used. To fill in the data left-right and top-bottom, we use the parameter LRTB;
then we print out the table.

Displaying Data

[58]

Excel Spreadsheets
Generating Excel spreadsheets is a task that most programmers are regularly called
on to do. Whether we like it or not, the fact is that an Excel spreadsheet has become
the standard for presenting and sharing tabular data. The easy-to-use format coupled
with the general availability of Excel-compatible programs makes it the format of
choice for many companies when they need to create reports for their management
or exchange data with other offices.

While there are several different techniques for generating Excel-compatible
files, which are mentioned briefly at the end of this section, the PEAR
class Spreadsheet_Excel_Writer stands out as the only pure PHP method of
creating native Excel spreadsheets.

Excel_Spreadsheet_Writer was ported into PHP from the Perl module
Spreadsheet::WriteExcel, and supports not only data input, but adding
formatting, formulas, multiple worksheets, images, and much more. Excel_
Spreadsheet_Writer does not utilize any external components like COM, so the
package is truly cross-platform and will run on any platform that PHP runs on.

The Excel Format
The format used by Excel Spreadsheet Writer is called BIFF5 (Binary Interchange
File Format). This is a binary standard introduced with Excel 5 and all modern
versions of Microsoft Excel as well as OpenOffice can parse the BIFF5 format.
The BIFF5 format is quite well understood and supported, but lacks some of the
features available in later versions of Excel. There is no official documentation of the
BIFF5 format from Microsoft, but many projects have done a lot of work in reverse
engineering and documenting BIFF5. One of the best sources of documentation is the
OpenOffice website. The relevant document is available at http://sc.openoffice.
org/excelfileformat.pdf.

Chapter 2

[59]

One of the common complaints about Excel Spreadsheet Writer is the way in which
it handles Unicode strings. This is actually not an issue with Excel Spreadsheet
writer, since it is simply missing from the BIFF5 format. There have been individual
efforts by users to add limited Unicode support into Excel_Spreadsheet_Writer.
At the time of writing there are no plans to incorporate these features into the official
Excel Spreadsheet Writer package.

Older Microsoft formats use a system called OLE to create compound documents
and because of this Spreadsheet_Excel_Writer depends on the PEAR OLE
package to wrap the BIFF5 document it creates into a valid Excel document.

Our First Spreadsheet
Getting started with Spreadsheet_Excel_Writer is very simple. In this first basic
example we will create a worksheet and add data into two cells. Now that we have a
basic understanding of what we are trying to do we'll get to the code.

require_once 'Spreadsheet/Excel/Writer.php';
$workbook = new Spreadsheet_Excel_Writer();

$worksheet =& $workbook->addWorksheet('Example 1');
$worksheet->write(0, 0, 'Hello World!');
$worksheet->write(0, 1, 'This is my first Excel Spreadsheet');
$worksheet->send('example1.xls')
$workbook->close();

When working with Spreadsheet_Excel_Writer we have two different choices
for the storing our completed spreadsheet. The first option, used here, is the send()
method, which will send the Excel headers (application/vnd.ms-excel) to your
browser followed by the spreadsheet data. This will either open the spreadsheet
in your browser for inline viewing, or prompt you to save it on your computer,
depending on your browser and its settings.

The second option is to save the generated file on your local file system. To do
this you simply give the path to the constructor upon instantiating the Spreadsheet_
Excel_Writer class. When you close the spreadsheet using close() the data will
be saved to the file specified. When deciding which method to use, it is important to
realize that when you send the spreadsheet directly to the web browser, you will not
be able to send any further HTML text. This is useful when the sole task of a script is
to dynamically serve spreadsheet documents. However in many cases you'll want to
generate the spreadsheet document and then print an HTML page, or alert the user
that the spreadsheet generation is complete. In these cases, it is practical to save the
spreadsheet to your filesystem and then continue with the generation of your HTML
page. For simplicity's sake we will use this method in future examples.

Displaying Data

[60]

Once we have our worksheet object set up we can go ahead and write some data
to a cell.

Finally we close the workbook, which compiles the data and either stores it in a file
or sends it to your browser, depending on the options you've chosen.

About Cells
Excel Spreadsheet writer uses two methods to point to cells within the Excel
Spreadsheet. When adding data to a spreadsheet we refer to the zero-based X and Y
positions of the cell. The first cell in the worksheet is referred to as 0, 0.

To use formulas you need to use a different notation using a letter for the column
and the line number. The first cell would be A1 in our example.

The difference between these two styles of referring to cells is most evident when
working with formulas. Thankfully, Spreadsheet_Excel_Writer provides a useful
function for converting from the row/col format to the cell name format.

$first = 1;
$last = 10;
for ($i = $first; $i <= $last; $i++) {
 $worksheet1->write($i, 1, $i);
}
$cell1 = Spreadsheet_Excel_Writer::rowcolToCell($first, 1);
$cell2 = Spreadsheet_Excel_Writer::rowcolToCell($last, 1);
$worksheet1->write($last + 1, 0, "Total =");
$worksheet1->writeFormula($last + 1, 1,
 "=SUM($cell1:$cell2)");

As you can see, we are using the row and column values to write the data to the
spreadsheet, then using the static rowcolToCell() method to convert the row/
column position to the cell address that the formula requires. In this example the
string value of $cell1 will be A1 and the value of $cell2 will be A10. Thus the
formula parsed by Excel will be =SUM(A1:A10).

We will learn more about formulas further on in this chapter.

Setting Up a Page for Printing
There are many options that affect how your spreadsheet is printed. This is
particularly useful if you are shipping a spreadsheet to a client and need exact
control over how the final spreadsheet is presented.

Chapter 2

[61]

All page formatting options are applied to the entire spreadsheet.

Function Usage
$worksheet->setPaper(1); Sets the size of the page using a constant.
$worksheet->setPortrait();
$worksheet->setLandscape();

Sets the orientation of the page.

$worksheet->setHeader();
$worksheet->setFooter();

Adds a header and footer to each page in
the spreadsheet

$worksheet->setMargins(.5); Sets each margin to the value in inches;
each of the margins can be set individually
as well.

$worksheet->printArea($firstcol,
$firstrow, $lastcol, $lastrow);

Defines what area of the page you
want printed.

$worksheet->hideGridlines(); Hides the grid when printing
$worksheet->fitToPages(2, 2); Sets the maximum number of pages to use

when printing this spreadsheet to 2 pages
across and 2 pages down.

$worksheet->setPrintScale($scale); Specifies the percentage by which to scale
the spreadsheet. 100% is the default. This
option overrides the "fit to page" option.

Adding some Formatting
Now that we have a basic understanding of how we can create Excel files with PHP,
we need to work on the formatting of the cells.

Unlike what we saw in HTML_Table where we directly edited the attributes of
individual cells to change the formatting, Spreadsheet_Excel_Writer takes an
object-oriented approach when it comes to creating and applying styles to cells.

To create a new style we use the addFormat() function from the workbook class.
This creates a formatting object, which we can then apply to as many different cells
as we like. This is similar to creating CSS classes in HTML, and in a project you are
likely to create several standard formatting objects and then use them throughout
your project.

require_once 'Spreadsheet/Excel/Writer.php';
$workbook = new Spreadsheet_Excel_Writer('example2.xls');

$worksheet =& $workbook->addWorksheet("Example 2");

$header =& $workbook->addFormat(array("bold" => true,
 "Color" => "white",

Displaying Data

[62]

 "FgColor" => "12",
 "Size" => "15"));

$worksheet->write(0, 0, 'Hello, World!', $header);

Here we create a new worksheet, and then send our formatting parameters to the
addFormat() function to get our formatting option that we can then apply to the
data we send when we add our text.

Each key of the array you send to the addFormat() function also has a separate
function, which you can use to set that format value independently.

$header =& $workbook->addFormat();
$header->setBold();
$header->setColor("white");
$header->setFgColor("12");

Because you are able to apply these formatting values independently of each other,
using this markup makes your code easier to manage and change in the future.

About Colors
Excel has an interesting way of working with colors. You will have noticed that we
set the FgColor attribute to 12 and the Color of the text to white. Excel uses both
named colors and its own internal color indexing system.

The following script generates the chart of Excel-compatible colors that you can use
in your spreadsheets.

require_once 'Spreadsheet/Excel/Writer.php';
$workbook = new Spreadsheet_Excel_Writer('example2a.xls');
$worksheet =& $workbook->addWorksheet("Colors");

$row = 0;
$col = 0;
for ($i = 1; $i <= 128; $i++)
{
 $format =& $workbook->addFormat(array("bold" => true,
 "Color" => "white",
 "FgColor" => $i));

 $worksheet->write($row, $col, '#'.$i, $format);

 $col++;$col++;
 if ($col == 7)
 {
 $col = 0;

Chapter 2

[63]

 $row++;
 }}
}
$workbook->close();

This will generate the following chart:

The palette of colors varies slightly between Excel 5 and Excel 97, so if you expect
users to be running very old versions of Excel, keep this in mind. The numbers are
not hex codes as in HTML; here they simply identify the colors.

You will no doubt notice that we have set the cell background color with the
FgColor attribute. The reason for the naming of this function is that with Excel you
can apply a pattern to the background of a cell. If no pattern is specified it defaults to
a solid pattern, and FgColor sets the foreground color of the pattern. Yes, it is a bit
difficult to understand. Patterns are described in detail in the next section.

If you need to apply a color other than the ones represented on this chart, you can
override one of the supplied colors with your own color. We create a new color by
first specifying which slot we want to use, in our case place 12, and then specify the
RGB values.

$workbook->setCustomColor(12, 10, 200, 10);

These substitutions apply to the entire spreadsheet.

Pattern Fill
Along with the unique color system, Excel also supplies background patterns.
The default pattern for cells is solid, with only the background color showing. The
following image shows the patters that are available as well as their identification
numbers. In this image dark grey is the foreground color and light grey as the
background color.

Displaying Data

[64]

Number Formatting
Excel also provides a wide array of formatting options for both the format and color
of numerical values.

Numbers within formats can be represented either with the # or the 0 placeholder.
The difference between the two placeholders is that using 0 will pad the results
with additional zeros but # will just display the number. The format #####.## when
applied to the number 4201.5 will display just that, while the format 00000.00 will
display 04201.50. The best strategy is to use a combination of both, #.00, to give the
expected result of 4201.50.

Another formatting placeholder that can be used is the ? character. This leaves a
space for insignificant 0s, but does not display the character if it is not available. This
is useful when you want to align a row of numbers by the decimal point.

When providing the format of a number, Excel allows you to define both the positive
and negative formats. The formats are separated by ; and will be used depending
on the value of the text or number in the field. For example, if you want positive
numbers to be displayed in blue and negative numbers to be displayed in red
surrounded by brackets, use the following formatting string:

$format =& $workbook->addFormat();
$format->setNumFormat('[Blue]$0.00;[Red]($0.00)');
$worksheet->write(2, 1, "-4201", $format);
$worksheet->write(2, 2, "4201", $format);

You can also specify the format for 0 values or for text values in the field.

$format =& $workbook->addFormat();
$format->setNumFormat('[Blue]0;[Red]0;[Green]0;@*-');
$worksheet->write(0, 1, 10, $format);
$worksheet->write(0, 1, -10, $format);
$worksheet->write(0, 1, 0, $format);
$worksheet->write(0, 1, "ten", $format);

This format will display positive numbers in blue, negative numbers in red,
0 values in green, and text will be padded with as many dashes as is needed to fill
the cell. Being able to manipulate the format allows you to create a format that, for

Chapter 2

[65]

example, doesn't show 0 values, or displays an error if text is added to what should
be a numerical field.

If you want the sum of a calculation to return as 6 Dollars and 95 cents instead of
$6.95, use the following formatting string.

$format =& $workbook->addFormat();
$format->setNumFormat('0 "Dollars and" .00 "cents"');
$worksheet->write(4, 1, 6.95, $format);

Taking this example one step further, we can display the cent value as a fraction.

$format =& $workbook->addFormat();
$format->setNumFormat('0 ??/?? "Dollars"');
$worksheet->write(0, 1, 42.50, $format);

This will display as 42 ½ Dollars.

Some more commonly used formats are shown in the table below:

Format Description
00000 Shows no less than 5 digits. Pads number

with leading 0s
;;;@ Suppresses numbers, only displays the text

(@)
#.??? Lines numbers up with the decimal.
#, Displays numbers in thousands
0.000,, "Million" Displays number in Millions followed by the

string "Million"
0;[Red]"Error!";0;[Red]"Error!" Displays a red Error! for negative numbers or

text values
0.00_-;0.00- Displays the negative sign on the right side

of the number and pads the space, so that the
decimal points line up

'0","000' Inserts a decimal point into your number:
10000 will display as 10,000

??/?? Displays the decimal value as a fraction
??/?? Displays a fraction with the decimal value
0.00E+# Displays the number in scientific notation

Displaying Data

[66]

Adding Formulas
Creating formulas and assigning them to cells is one of the basic functions of Excel. formulas and assigning them to cells is one of the basic functions of Excel.
Now that we can add and format data in our spreadsheet we can add a couple of
formulas to make Excel do the work for us.

require_once 'Spreadsheet/Excel/Writer.php';

$workbook = new Spreadsheet_Excel_Writer('example3.xls');

$worksheet =& $workbook->addWorksheet("Example 3");

$tax =& $workbook->addFormat();
$tax->setNumFormat('.00%');

$price =& $workbook->addFormat();
$price->setNumFormat('$####.00');

$worksheet->write(0, 0, 'Tax Calculation Worksheet');

$worksheet->write(1, 0, 'VAT:');
$worksheet->write(1, 1, ".16", $tax);
$worksheet->write(2, 1, 'Price');
$worksheet->write(2, 2, "With Tax");

$worksheet->freezePanes(array(3));

for ($i = 3; $i < 101; $i++)
{
 $worksheet->write($i, 0, "Item $i");
 $worksheet->write($i, 1, rand(3, 100), $price);
 $cell = Spreadsheet_Excel_Writer::rowcolToCell($i, 1);
 $worksheet->writeFormula($i, 2, "=($cell*B2)+$cell",
 $price);
}

$worksheet->writeFormula(102, 1, "=SUM(B4:B102,C4:C102)", $price);
$workbook->close();

This example generates 100 random numbers, adds them to the worksheet, and then
creates a formula to apply a tax. This formula can be changed by the spreadsheet
user. We used the rowcolToCell() helper function that enables us to quickly switch
from the row/column value to the cell address that Excel expects in its formulas.

The final formula at the end of the worksheet calculates the SUM of columns B and C.
Excel is picky about the argument separator, and I've added this example to
illustrate that when passing arguments to an Excel function, the writeFormula()

Chapter 2

[67]

method requires a comma as the argument separator. In certain localized versions of
Excel, the formula SUM(B4:B102,C4:C102) would be written as SUM(B4:B102;C4:
C102) using the ; separator. A small difference, but one that can easily create difficult-
to-find bugs.

Since this example scrolls down past the viewable area of our screen we have frozen
the top 3 rows using the freezePanes() method.

Multiple Worksheets, Borders, and Images
Now that the hard stuff is out of the way, we can return to making our spreadsheet
look nice.

To illustrate the use of formats, we will create a simple Invoice generator. For the
sake of brevity we have excluded a lot of formats, so further beautification is left as
an exercise for the reader.

<?php
require_once 'Spreadsheet/Excel/Writer.php';

$workbook = new Spreadsheet_Excel_Writer("example4.xls");
$worksheet =& $workbook->addWorksheet();
$worksheet->writeNote(1, 0, "Invoice For New Customer");

$worksheet->setRow(0, 50);
$worksheet->insertBitmap(0, 0, "logo.bmp", 0, 0);

$left =& $workbook->addFormat(array("Left" => 2));
$right =& $workbook->addFormat(array("Right" => 2));
$number =& $workbook->addFormat(array("NumFormat" =>
 '$####.00'));

$worksheet->write(1, 1, "Client Name:");
$worksheet->write(2, 1, "Tax:");
$worksheet->writeNumber(2, 2, .16);

$cart = array("Monitor" => 12,
 "Printer" => 14.4);

$top = 4;
foreach ($cart as $item => $price)
{
 $worksheet->write($top, 1, $item, $number);
 $worksheet->write($top, 2, $price, $number);
 $cell = "C" . ($top + 1);

Displaying Data

[68]

 $worksheet->writeFormula($top, 3, "=($cell*C3)+$cell",
 $number);
 $top++;
}

$lastrow = $top + 1;

for ($i=1; $i <= $lastrow; $i++)
{
 $worksheet->writeBlank($i, 0, $left);
 $worksheet->writeBlank($i, 7, $right);
}

$worksheet->write($lastrow, 2, "Total:");
$worksheet->writeFormula($lastrow, 3, "=SUM(D5:D$lastrow)",
 $number);

$workbook->close();

The important points to note are the adding of the image and the borders that
have been created. Bitmap images can be included into your spreadsheet using the
insertBitmap() method.

This is fairly straightforward, but because it works in a way that many people don't
expect, many people have reported a bug when trying to change the height of the
row in which the Bitmap sits.

The reason for this behavior is that the height of the row must be set before the image
is included into the spreadsheet. If you add the image and then change the row
height the image will be stretched or shrunken, which is most likely not what you
want. In this example, we first call the setRow() method, and once we have set the
row to the correct height we use insertBitmap() to embed the image.

Borders work exactly the same as a text format. Simply add the style of border
to your format and apply it to the cell. In this case we don't need to put any data
into the cells formatted with the border formats, so we use the writeBlank()
method to add a format to a cell without inserting data. You will also notice that
we use the writeNumber() and writeNote() methods in this example; these
are just a few of the different ways to write specific data to a spreadsheet with
Spreadsheet_Excel_Writer.

In this example we only generated one invoice. However if you are pulling data from
an external source and need to create multiple invoices, you can easily add as many
worksheets as you need, by adding each of them with the addWorksheet() method
of the workbook class.

Chapter 2

[69]

Other ways to create Spreadsheets
Spreadsheet_Excel_Writer is the best way to create high quality pure Excel
spreadsheets. However, in instances where you do not need all the features that
Excel_Spreadsheet_Writer supports, and would prefer to use something simpler
for displaying your data, there are simpler options.

CSV
The humble CSV (comma separated value) is the simplest of data exchange formats
and many programs enable the import and the export of CSV data. PEAR offers easy
read and write access to CSV files through the File module.

The Content-Type Trick
One commonly used technique that works quite well in modern Excel versions is
to simply create an HTML table containing your data, and then send a content-type
HTTP header with the value of application/vnd.ms-excel followed by your table.
The web browser will accept the header and treat the HTML table as if it were an
Excel spreadsheet. Excel will accept the HTML table and will display it, but you will
have less functionality than with native Excel documents.

The reason why this works is that the most recent Excel file formats are XML-based
and Excel is fairly lenient when it comes to the formatting.

Generating Excel 2003 Files
Unlike the difficult-to-use BIFF format, the new Microsoft document formats are
based on XML, standards compliant, and well documented. One technique in use is
to create your document using a recent version of Excel, then edit the generated XML
document and add PHP tags within the XML document. You would need to change

Displaying Data

[70]

your web server configuration to parse the Excel Documents as PHP files, but once
this is done you can have fun using PHP inside Excel Documents.

Creating Spreadsheets using
PEAR_OpenDocument
Thanks to a Google Summer of Code project, work is being done to create an
OpenDocument reader/writer for PEAR. When this is complete, it will be possible
to create full-featured OpenDocument spreadsheets. In the most recent versions of
Microsoft Office, steps have been taken for interoperability with OpenDocument
formats. While at the time of writing there is no way to open an OpenDocument
spreadsheet with Office, it is on the roadmap for future releases.

DataGrids
Windows programmers are familiar with the concept of using a DataGrid
component to display data in a flexible and sortable grid. In simple scenarios, all a
programmer needs is to pull data out of a DataSource (database, text file, array) and
display it in an easily configurable HTML web page. In more complex scenarios a
programmer will want to make the grid sortable, enable data filtering, and render it
to multiple formats.

On the web front, ASP.NET programmers have a DataGrid component available
to them. PHP has no standard implementation of the DataGrid, and most PHP
programmers have had to write their own component or settle for a third-party
component or commercial implementation.

As mentioned above, a DataGrid component requires several elements.

You need to get the data from somewhere; this is referred to as your
DataSource.
You need to create your DataGrid and select an output format, which is
referred to as the Renderer.
You need to bind the DataSource to the DataGrid and display the latter.
These requirements are generally standardized between DataGrid
implementations.

Structures_DataGrid from PEAR fills this space nicely. Not only does
Structures_DataGrid give you the standard options of fetching data from a
database and binding it to an HTML table, it also offers a driver-based approach
for both fetching and rendering data. This allows Structures_DataGrid to, for
example, use its XML DataSource driver to import data from an XML file, choose

•

•

•

Chapter 2

[71]

which fields you want to display, and then render the tabular data in any format
for which a rendering driver exists. If project requirements change and you need
to render your DataGrid into additional formats, this is as simple as creating a new
Structures_DataGrid renderer.

As you may have already guessed, this flexibility not only enables you to create
extremely powerful DataGrids, but has the side benefit of being a powerful data
conversion engine, as you are now able to convert data from any format for which a
DataSource driver exists into any format for which a renderer exists. In the following
table the currently available DataSources and renders are listed. The third column in
the tables represents the constant that represents the DataSource or renderer and is
sent as a parameter to the Structures_Datagrid constructor.

DataSources
Name Function Constant
CSV Parses data from the Comma

Separated Value format
DATAGRID_SOURCE_CSV

DataObject Uses the PEAR Object Interface to
database tables DB_DataObject to
query data from a database

DATAGRID_SOURCE_DATAOBJECT

RSS Fetches and parses data from an
external RSS feed

DATAGRID_SOURCE_RSS

DB Fetches data using PEAR::DB DATAGRID_SOURCE_DB

XML Parses an XML file DATAGRID_SOURCE_XML

Renderers
Name Function Constant
Excel Generates native MS Excel files using PEAR::

Spreadsheet_Excel_Writer
DATAGRID_RENDER_XLS

HTML_
Table

The default Renderer; shows the data as a
configurable, sortable, and pageable HTML table

DATAGRID_RENDER_
TABLE

XML Formats the data into an XML file DATAGRID_RENDER_XML

XUL Renders the DataGrid into an XUL grid for Mozilla,
Firefox, and other Gecko-based web browsers

DATAGRID_RENDER_XUL

CSV Renders the DataGrid to the Comma Separated
Value format

DATAGRID_RENDER_CSV

Console Renders the DataGrid into a table that can be
displayed on a console

DATAGRID_RENDER_
CONSOLE

Displaying Data

[72]

First we will start off with some simple examples of Structures_DataGrid usage,
and then jump into rendering, formatting, and extending the Structures_DataGrid
package.

A Simple DataGrid
Now that we've understood what Structures_DataGrid does, let's dig into some
code to see how it works.

require_once 'Structures/DataGrid.php';

$data = array(array('First Name' => 'Aaron',
 'Last Name' => 'Wormus',
 'Email' => 'aaron@wormus.com'),
 array('First Name' => 'Clark',
 'Last Name' => 'Kent',
 'Email' => 'clark@kent.com'),
 array('First Name' => 'Peter',
 'Last Name' => 'Parker',
 'Email' => 'peter@parker.com'),
 array('First Name' => 'Bruce',
 'Last Name' => 'Wayne',
 'Email' => 'bruce@wayne.com')
);

$dg =& new Structures_DataGrid;
$dg->bind($data);
$dg->render();

This example clearly shows the three steps involved in creating a DataGrid. First we
create an instance of the Structures_DataGrid package. Next we use the bind()
method to bind the data array to the DataGrid. The default DataSource driver that
Structures_DataGrid uses is ARRAY, so we can simply pass an array to our DataGrid
without setting any other options. Once the DataSource is bound to our DataGrid, we
render it using the render() method, which gives us a fully functional DataGrid.

An important part of this code snippet is the fact that the instance of the DataGrid
class must be instantiated as a reference using the =& syntax. This design change
had to do with how Structures_DataGrid dealt with its drivers. Since this broke
backwards compatibility, keep this in mind when creating or upgrading your
DataGrid instances.

Chapter 2

[73]

As you can see, the default usage of the DataGrid includes sorting of the records
presented. Simply click on the header links to sort the DataGrid using that column.
We will give more examples of this later on in the chapter.

Paging the Results
Structures_DataGrid uses the PEAR class PAGER to offer the ability to add Google-
like paging to your DataGrid. To limit the results displayed on each page, simply
send the number of records you want to display per page to the constructor.

$dg =& new Structures_DataGrid('2');

After displaying your DataGrid, you will need to display the paging control to give
your users access to the records on pages that are not displayed on the front page.

echo $dg->renderer->getPaging();

This calls the HTML renderer and prints out the paging control. Paging is specific to
the renderer used; at this point only the HTML renderer supports paging.

Using a DataSource
In a real-life scenario, we wouldn't be adding data through an array, but will
most likely be pulling data from an external source. To do this we use DataGrid's
DataSource drivers.

To create a new DataSource we use the create() method of the
Structures_DataGrid_DataSource class. This method takes three parameters.
The first parameter points to the location of the data, the second holds an array with
the driver-specific options, and the third parameter is a constant that defines the
DataSource driver.

In this example, we use the CSV DataSource driver to read data from a customer list
database that has been exported from our address book.

require_once 'Structures/DataGrid.php';
require_once 'Structures/DataGrid/DataSource.php';
$opt = array('delimiter' => ',',

Displaying Data

[74]

 'fields' => array(0, 1, 2),
 'labels' => array("First Name", "Last Name", "Email"),
 'generate_columns' => true);
$data = Structures_DataGrid_DataSource::create('data.csv',
 $opt, DATAGRID_SOURCE_CSV);
$dg =& new Structures_DataGrid();
$dg->bindDataSource($data);
$dg->render();

The options specify what we are using as the field delimiter, the fields we want to
include in our DataGrid, the labels of the fields, and finally whether we want to
generate the columns with the headers. We will talk more about manually generating
columns later, but for now setting this option will do what we need.

We bind our data to the DataGrid using the bindDataSource() method and then
render the output.

Using a Renderer
Now we have our DataGrid and it is pulling the data out of our CSV file and
displaying it as an HTML DataGrid, but we want to use the power of Structures_
DataGrid's renderers to export our data into an Excel document. We do this by
changing the following lines in the above example.

// Instruct the Structures_Datagrid to use the XLS renderer
$dg =& new Structures_DataGrid(null, null, DATAGRID_RENDER_XLS);

// Set the filename which we will be using
$dg->renderer->setFilename('datagrid.xls');

// Bind the data, and render the output
$dg->bindDataSource($data);
$dg->render();

Now we have a fully functional CSV to XLS converter. Unfortunately the XLS
renderer does not use the full functionality of Spreadsheet_Excel_Writer to add
formatting to the rows and headers, but for now this is good enough. We can use
the other renderers by simply changing the constant in the constructor of
Structures_DataGrid.

Chapter 2

[75]

Structures_Datagrid Constructor Options

The Structures_DataGrid constructor takes three
parameters. The first parameter specifies the limit of how
many results are displayed on the current page, the second
parameter specifies which page is displayed, and the third
option defines which renderer is used.

Making it Pretty
Now that we have Structures_DataGrid doing what we want, we need to make the
result look pretty enough for us to impress the management. Each renderer provides
a variety of different formatting options. We will use the default HTML_Table
renderer and insert some options into the last script.

$dg =& new Structures_DataGrid(2, null, DATAGRID_RENDER_TABLE);
$dg->renderer->setTableHeaderAttributes(array('bgcolor' =>
 '#3399FF'));
$dg->renderer->setTableOddRowAttributes(array('bgcolor' =>
 '#CCCCCC'));
$dg->renderer->setTableEvenRowAttributes(array('bgcolor' =>
 '#EEEEEE'));

// Define DataGrid Table Attributes
$dg->renderer->setTableAttribute('width', '100%');
$dg->renderer->setTableAttribute('cellspacing', '1');

// Set sorting icons
$dg->renderer->sortIconASC = '↑';
$dg->renderer->sortIconDESC = '↓';
$dg->bind($data);

You will notice that we are sending additional parameters to Structures_DataGrid
when instantiating the class. The second attribute specifies which page we want to
display, and the third specifies the driver we will use for rendering the DataGrid.
While it is not necessary to explicitly set the DATAGRID_RENDER_TABLE renderer since
it is the default renderer, we have set it for the sake of this example.

After initiating an instance of the DataGrid object, we can start playing with the
renderer. As you can see from the example, you can set the individual attributes of
the table, the headers, or the even and odd rows. The HTML_Table renderer is one
of the most complete renderers and offers several more formatting options than the
others. We have only used a small subset of the options here.

Displaying Data

[76]

Before we are done, we add the sort icons, which will show in the header when
a specific column is being sorted. We use the HTML entities for "Up Arrow" and
"Down Arrow". Note that any HTML code can be entered here, so using an image is
also possible.

Extending DataGrid
In the previous section, the code for setting the table attributes was fairly long,the previous section, the code for setting the table attributes was fairly long,
and you wouldn't want to have to repeat this code each time you want to display a
DataGrid. To solve this problem, we can create a class that extends the Structures_
DataGrid package so that each time you call your new class, all the renderer
attributes will be automatically added.

require 'Structures/DataGrid.php';
class myDataGrid extends Structures_DataGrid
{
 function myDataGrid($limit = null, $page = 0)
 {
 parent::Structures_DataGrid($limit, $page);
 $this->renderer->setTableAttribute('width', '100%');
 // ... Enter the rest of your formatting code here ...
 $this->renderer->sortIconDESC = '↓';
 }
}

$dg =& myDataGrid();

Now whenever we instantiate a new myDataGrid object, all the table attributes will
already be set, and we will have a central place to change the look of the DataGrids
used in our project.

A more flexible approach if you have a site in which you use several different
DataGrids is to create several classes that extend Structures_DataGrid in the
specific ways that you need, and then instantiate the class you are creating using a
simplified factory pattern.

function getDGInstance($type)
{
 if (class_exists($type))
 {
 $datagrid =& new $type;
 return $datagrid;
 } else
 {

Chapter 2

[77]

 return false;
 }
}

$dg = getDGInstance('myDataGrid');

// We can create another instance of DataGrid using a
// seperate extended class like this

$dg = getDGInstance('myDataGrid2');

This example is fairly limited, but it gives a good idea of how to easily deal with
multiple instances of extended Structures_DataGrid classes.

Adding Columns
The columns of your DataGrid are actually instances of the Structures_DataGrid_
Column class. Until now, DataGrid has taken care of this behind the scenes, so it was
not necessary for us to create the columns ourselves. However, if you want to add a
column to your DataGrid, you will need to do this manually.

In this example, we will use the RSS DataSource driver to pull data from an external
RSS file and then display it with several additional columns.

require_once 'Structures/DataGrid/DataSource.php';

// Specify the Columns from the RSS we want to use
$options = array('fields' => array('title', 'link'));
$rss = "http://rss.slashdot.org/Slashdot/slashdot";
$ds = Structures_DataGrid_DataSource::create($rss, $options,
 DATAGRID_SOURCE_RSS);
// Instantiate our extended DataGrid class
$dg =& new myDataGrid;
// Create 2 columns
$titleCol = new Structures_DataGrid_Column('Title', 'title');
$funcCol = new Structures_DataGrid_Column('Function', null);
// Attach Formatters
$titleCol->setFormatter('printLink()');
$funcCol->setFormatter('sendLink()');
// Add Columns to DataGrid
$dg->addColumn($titleCol);
$dg->addColumn($funcCol);
// Bind DataSet to DataGrid and render
$dg->bindDataSource($ds);
$dg->render();

Displaying Data

[78]

You have seen most of this code in previous examples. We create a DataSource using
the RSS driver and set the options to display the title and link fields.

The interesting part comes when we create our columns by creating instances of
the Structures_DataGrid_Column class. The parameters we use are the title of the
column and name of the field it is associated with. Structures_DataGrid_Column
accepts several other values, such as formatting options, table attributes, auto-fill
values, and sort-by values, but we will keep this example simple.

We want to add some special features to the column that contains the URL and our
function column, so we use the setFormatter() method to point to functions that
will format the columns; the functions follow:

function printLink($params)
{
 $data = $params['record'];
 return "$data[title]";
}
function sendLink($params)
{
 $data = $params['record'];
 $link = urlencode($data["link"]);
 return "Send Link to
 Friend";
}

The $params variable is an array that contains all the data from the current record of
the dataset. We put the record data into the $data variable and then return the data
as we need it formatted in the column of our DataGrid. In this case we only have
two columns; the first is a link to the article, and the second formats the URL and
connects it to our script so we can send this link to a friend.

Generating PDF Files
When discussing file formats, something must be said about the PDF format. PDF
(Portable Document Format) is the 600-Pound gorilla of file documents. Originally
a proprietary document format created by Adobe, PDFs have gained popularity as
solving a specific problem, that is to create a document and be assured that it will
look exactly the same on any system that the document is viewed on.

Unfortunately, there is a cost to the portability of PDF documents. It is an extremely
complex format and is notoriously difficult to decipher, even for those who read the
1,000+ pages of the specification.

Chapter 2

[79]

Thankfully, as PEAR users, we don't have to worry about reading the lengthy
technical specification and can simply use the File_PDF library to handle our PDF
creation needs. With a simple API we are able to do the majority of the tasks that
present themselves, including displaying text, drawing lines and other objects,
displaying images, writing to
tables, etc.

The following is a simple business letter created with File_PDF. For the sake of a
simple, yet fully functional example, we use the setXY() function. This function sets
the starting point to the X and Y position specified. When creating a larger document,
or a document that contains dynamic content, you will probably want to stick to the
more flexible methods of inserting content detailed in the section about Cells.

require_once "File/PDF.php";

$company_name = "Wormus Consulting";
$my_address = "123 Aaron Way, Gotham City, 12421 RQ, USA";

// Set some initial margins
$lm = 22;
$rm = 22;
$tm = 22;
$bm = 22;

$padding = 10;

$pdf = File_PDF::factory();
$pdf->open();

// Can also be done with setMargins
$pdf->setLeftMargin($lm + $padding);
$pdf->setRightMargin($rm + $padding);
$pdf->addPage();

// Set the typeface for the title
$pdf->setFont('Arial', 'B', '12');
$pos = $tm + $padding;
$pdf->setXY(10, $pos);

// Draw the Company Name
$pdf->cell(0, $padding, $company_name, null, 0, 'R');
$pdf->setFont('Arial', 'B', '8');

$pos += 10;
$pdf->setXY(10, $pos);

$pdf->cell(0, 0, $my_address, null, 1, 'R');

Displaying Data

[80]

$pos += 3;
$pdf->setXY($lm, $pos);
$pdf->line($lm + $padding, $pos, 210 - $rm - $lm, $pos);

$pos += 10;
$pdf->setXY($lm, $pos);
$pdf->newLine();
$pdf->write('4', "John Smith");
$pdf->newLine();
$pdf->write('4', "122 Peters Lane");
$pdf->newLine();
$pdf->write('4', "32235 City, State");
$pdf->newLine();
$pdf->write('4', "Country");
$pdf->newLine();
$pos += 20;
$pdf->setXY($lm, $pos);
$pdf->newLine();

$pdf->write('4', "To whom it may Concern:");
$pos += 6;
$pdf->setXY($lm, $pos);
$pdf->newLine();

// shortened for the sake of brevity
$text = "Lorem ipsum dolor ... porta eleifend. ";";
$pdf->MultiCell(210 -$lm -$rm - $padding *2, 3, $text, null, "J");
$pdf->newLine(10);
$pdf->write("10", "Best Regards,");
$pdf->output();

Chapter 2

[81]

This simple example demonstrates some of the functionality of File_PDF and creates
a good-looking example of a business letter.

After including the main package, the process for creating a new page is very simple.
The factory method creates a new instance of the File_PDF class and also accepts
several parameters:

$pdf = File_PDF::factory(array('orientation' => 'P',
 'unit' => 'mm',
 'format' => 'A4'));

This sets the orientation to portrait, the unit size to millimeters, and the paper format
to A4. These are the default parameters, so if you want to use these parameters there
is no reason to explicitly set these values.

Displaying Data

[82]

Once we have a new instance of the class we can call the open() method to start
the document, and then add a page to the document. When adding a new page, the
first thing that happens is that the header() and footer() methods are called; more
about this later on in this chapter.

We now have a page and can begin to add data to the page.

Colors
We didn't change any colors in our simple example, but adding colors is very easy
to do. File_PDF offers two functions for adding colors to your document. When
specifying a color in your document, you are specifying that you want this color to
be used from the point you initiated the color until the end of the page. When File_
PDF creates a new page, it will re-instate the color options that are set, so unless you
change the color or reset it to the previous value the color will remain until the end
of the document.

The two functions you will use for this are setDrawColor() and setFillColor().
Each of these functions uses the first parameter to specify which color space is being
used (rgb, cymk, or gray), and the proceeding parameters to set the values for each
of the colors being used.

The setDrawColor() applies the specified color to lines that are drawn, and
setFillColor() applies the color to text, areas, and cells that do not have a
transparent background.

$pdf->setDrawColor("rgb", 0, 0, 255);
$pdf->setFillColor("rgb", 255, 0, 0);

Adding these lines to the top of your file will make your document use red text and
blue lines.

Fonts
Like setting colors, a font setting also applies to the entire document from the point
where the font is set. The following example will set the font to a bold 8-point Arial
typeface.

$pdf->setFont("Arial", "B", 8);

A standard set of fonts that are readily available on most systems are predefined
in File_PDF. If you want to use any other fonts you will need to make sure that

Chapter 2

[83]

they are available on the system, else you will need to convert them to a Type1 or
TrueType font and then add it to the system. The description of how this is done is
beyond the scope of this chapter, but it involves creating a font definition file using
the included makefont.php utility, and then loading that data using the addFont()
function. Once these steps have been taken you will be able to use the font in the
setFont() function.

Cells
An easy way to write structured data to a PDF is to write to cells. A cell is simply a
rectangular area to which you can add text and optionally borders and a background
color.

$pdf->cell(0, $padding, $company_name, null, 0, 'R');

The first parameter is the width of the cell. If it is set to 0 then the cell will stretch to
the right margin. The second parameter specifies the height of the cell, and the third
parameter specifies the text to be displayed within the cell. The fourth parameter
specifies whether or not a border should be drawn. A null setting implies no border.
You can also specify which sides of the cell you want the border drawn on using the
fifth parameter. In the example below, we are drawing borders on the left and right
sides of the cell.

$pdf->cell(0, $padding, $company_name, null, 0, "LR", 'R', 0,
 "http://example.com");

The next parameter specifies that the text will be right-aligned, the seventh (optional)
parameter specifies whether a cell background is transparent or painted using the
assigned background color. Finally, we can optionally add a link that we want this
cell to point to when clicked and also create a link identifier using the addLink()
function and add the identifier here instead of the URL.

Creating Headers and Footers
File_PDF is designed to let programmers extend the base package to enable the
addition of headers and footers called when each page is created. To use these
methods, you will need to create a new class that you will use when creating your
PDF document.

class My_File_PDF extends File_PDF
{
 function header()
 {
 // Select Arial bold 15
 $this->setFont('Arial', 'B', 15);

Displaying Data

[84]

 // Move to the right
 $this->cell(80);
 // Framed title
 $this->cell(30, 10, 'Title', 1, 0, 'C');
 // Line break
 $this->newLine(20);
 }
}

This is just one example of how you can extend File_PDF to override the default
functionality. When using File_PDF in your projects, you'll want to extend the base
class to utilize this functionality. The manual and code samples distributed with the
package give more insight into what you can do with this.

Summary
While this chapter covers the highlights of how you can utilize PEAR packages to
display your data, the examples given only cover a small part of the functionality
available within these very fully featured packages.

There are other packages available for reading and writing to other formats, such
as vcards and BibTeX. There are powerful parsers for reading and writing data
into Wiki syntax, and much more that we did not touch in this chapter.

Working with XML
XML has been drawing more and more attention during recent years. In fact, in the
new PHP version, PHP 5, XML support has been completely revamped and is now
based on the libraries libxml2 and libxsl, which implement the W3C standards
and recommendations in nearly every aspect.

But XML is not only hype; there are several applications where XML is definitely the
best choice. If you need to store hierarchical data structures, such as the structure and
contents of a page in a content management system, XML is perfectly suited for the
job. But a content management system is not the only application where XML comes
in handy. Even if you develop a smaller application, you can use XML for your
configuration files. This way they are more flexible and can more easily be extended
if new features are added. An XML document does not only contain key/value pairs
like a standard INI configuration; the values are always related to a context through
their position in the XML tree structure. Another common use of XML is data
exchange between different companies, applications, or servers. One particular data
exchange will be covered in Chapter 4, as nearly all modern web services use XML as
their data format.

The multiple use cases of XML are not the only advantage of this simple, but
powerful format. Through its resemblance to HTML, it can be easily read and
interpreted by humans. In contrast to HTML, XML has to follow stricter rules, which
makes it easer to process by machines and applications. Furthermore XML brings a
lot more flexibility to the developer than HTML. While HTML defines which tags
may be used in a document, XML only defines some basic rules that a document
needs to follow but lets the developer choose which tags may be used in a document
and how the application processing the document should interpret them. Creating
a new XML application is simply creating a new set of tags that are used together
in a document. Currently there are already several of these XML applications, like
XHTML (the XML-compatible version of HTML), SVG (Scalable Vector Graphics),
XML Schema (an XML language to define rules for other XML applications), or XUL,
the language used by Mozilla to build its user interface. You do not need to be part of

Working with XML

[86]

any organization or committee in order to create your own XML application; this can
be done by anyone who needs it.

PEAR Packages for Working with XML
As XML got more attention from developers and even from PHP, it got more
important for the PEAR project and the XML category has become one of the
fastest-growing categories of PEAR. At the time of writing, PEAR offers 28 packages
(web services not included) that aid you in creating and processing XML documents.
This chapter will introduce you to the most important packages that this category
provides. The chapter is split into two parts. While the first half shows you how
to leverage PEAR to create new XML documents from scratch, the second part
introduces parsing and analyzing existing documents. On the following pages, you
will learn how to use XML_Util or XML_FastCreate to turn any object tree into a
valid XML document by iterating over the data. After that, we will use the powerful
XML_Serializer package to create an XML document from any data you pass in. As
you will see, this makes the creation of XML documents with PEAR easy as cake,
irrespective of whether you have your data organized in arrays, objects, or any
arbitrary data source.

In the second part of this chapter we will use XML_Parser to create a configuration
reader that is able to extract information from an XML document and provides an
object-oriented API to the configuration. Later, we will use the XML_Unserializer
class, which comes packaged with XML_Serializer, to convert various XML
documents into nested arrays and object structures. We will also use this class to
read the same XML configuration we processed with XML_Parser but without
having to worry about the actual XML parsing. Finally we will use the XML_RSS
package to include news feeds from any website that provides RSS feeds into your
PHP application.

Before we start with PEAR, let us take a look at the rules that apply for XML
documents.

Creating XML Documents
At first glance, creating XML documents seems to be extremely easy. After all, a
document only consists of tags in plain text, so it is nothing more than an HTML
document and you should be able to use concatenation or PHP's string functions
for this task. However, there are some points that are often overlooked when
creating XML and which can haunt you as a developer if your application is used
in production. These points are closely related to the rules that any XML document
must follow:

Chapter 3

[87]

XML is (in contrast to HTML) case sensitive; <foo/> is not equivalent
to <Foo/>.
Every XML tag must be closed. If the tag contains no data, the closing tag
may be omitted and the tag can be written as an empty element tag. That
means you have to use
 instead of just
.
Tags must be nested correctly and the last opened tag must be closed first. So
the XML snippet <i>Clark Ken tis</i> Superman is not valid but
<i>Clark Kent</i> <i>is</i> Superman is.
Every XML document needs exactly one root element, which is opened at the
top of the document and closed as the last tag in the document.
The characters &, <, >, ", and ' need to be replaced with their matching
XML entities &, <, >, ", and ' when used as data
or attribute values. These are the only entities that can be used in an XML
document without declaring them beforehand.
All attributes must be quoted either using double or single quotes.
The document must comply with its character-set definition. This character
set can be defined in the XML declaration that precedes the actual XML. If
the document is delivered via HTTP, it can also be supplied by a header. If
no encoding is given, the default encoding UTF-8 is assumed.

An XML document that meets all these requirements is called a well-formed
document. Here is an example of a well-formed XML document.

<?xml version="1.0" encoding="ISO-8859-1"?>
<labels>
 <label name="Sun Records">
 <artists>
 <artist id="1">
 <name>Elvis Presley</name>
 <records>
 <record id="SUN 209" released="July 19, 1954">
 <name>
 That's All Right (Mama) & Blue Moon Of Kentucky
 </name>
 </record>
 <record id="SUN 210" released="September, 1954">
 <name>
 Good Rockin' Tonight
 </name>
 </record>
 </records>
 </artist>

•

•

•

•

•

•

•

Working with XML

[88]

 <artist id="2">
 <name>Carl Perkins</name>
 <records>
 <record id="SUN 224" released="October 22, 1955">
 <name>
 Gone, Gone, Gone
 </name>
 </record>
 </records>
 </artist>
 </artists>
 </label>
<labels>

Now it looks difficult to create this XML document using only PHP's basic string
capabilities and string functions. On the following pages, you will learn how to use
several PEAR packages to generate this XML document.

Creating a Record Label from Objects
Before we use PEAR to create the XML document, let us build the PHP data structure
that will be used to hold the actual data used for the XML generation. If you take
a close look at the document, you will see that it contains information about three
different entities: a record label (Sun Records), artists that the record label signed
(Elvis Presley and Carl Perkins), and the records these artists recorded. So first we
need to implement classes that can be used to store the properties of these three
entities. As the root element is the record label, we start with the Label class:

/**
 * Store information about a record label
 * and the signed artists
 */
class Label {
 public $name = null;
 public $artists = array();

 public function __construct($name) {
 $this->name = $name;
 }
 public function signArtist(Artist $artist) {
 // get the next higher id
 $artist->setId(count($this->artists)+1);
 $this->artists[] = $artist;
 }
}

Chapter 3

[89]

Besides the $name property this class also has an $artists property, which will later
store objects of the signed artists. The name of the label is passed to the constructor,
and the signArtist() method is used to add a new artist to the list. This method
accepts an instance of the Artist class, which is implemented next:

/**
 * Store information about an artist
 * and the records he released
 */
class Artist {
 public $id = null;
 public $name = null;
 public $records = array();

 public function __construct($name) {
 $this->name = $name;
 }
 public function setId($id) {
 $this->id = $id;
 }
 public function recordAlbum(Record $album) {
 $this->records[] = $album;
 }
}

Again the constructor of the class is used to set the name of the artist, and with the
recordAlbum() method it is possible to add an instance of the Album class to the list
of recorded albums. This class also provides a setId() method, which is called by
the Label object when the artist is added to the list of signed artists. Last we need to
implement the Record class, which stores all information about a recorded album:

/**
 * Store information about a record.
 */
class Record {
 public $id = null;
 public $name = null;
 public $released = null;

 public function __construct($id, $name, $released) {
 $this->id = $id;
 $this->name = $name;
 $this->released = $released;
 }
}

Working with XML

[90]

Now that all container classes have been implemented, creating the data structure is
extremely easy:

// create the new label
$sun = new Label('Sun Records');
// create a new artist
$elvis = new Artist('Elvis Presley');

// add the artist to the list of signed artists
$sun->signArtist($elvis);

// record two albums
$elvis->recordAlbum(
 new Record('SUN 209',
 'That\'s All Right (Mama) & Blue Moon Of Kentucky',
 'July 19, 1954'
)
);
$elvis->recordAlbum(
 new Record('SUN 210',
 'Good Rockin\' Tonight',
 'September, 1954'
)
);

// Create a second artist and record an album
$carl = new Artist('Carl Perkins');
$carl->recordAlbum(
 new Record('SUN 224',
 'Gone, Gone, Gone',
 'July 19, 1954'
)
);
// Add the artist to the label
$sun->signArtist($carl);

// create a list of labels (if we have more
// than one label at a later point)
$labels = array($sun);

After creating a new Label object, we can easily add as many Artist objects as we
like and for each of these artists we just add any number of Record objects. So if the
data of the record label is stored in the database you can easily write a script that
fetches the data and builds the needed structure using these three classes.

Chapter 3

[91]

Now if the resulting structure is printed to the screen using print_r() the following
output is generated:

Array (
 [0] => Label Object (
 [name] => Sun Records
 [artists] => Array (
 [0] => Artist Object (
 [id] => 1
 [name] => Elvis Presley
 [records] => Array (
 [0] => Record Object (
 [id] => SUN 209
 [name] => That's All
 Right...
 [released] => July 19,
 1954
)
)

)
 [1] => Artist Object (
 [id] => 2
 [name] => Carl Perkins
 [records] => Array (
 [0] => Record Object (
 [id] => SUN 224
 [name] => Gone, Gone, Gone
 [released] => July 19,
 1954
)
)
)
)
)
)

Note that the print_r() output has been slightly modified to save some space.

Working with XML

[92]

Why not generate XML directly from the database?

You may wonder why these three helper classes have been
implemented as value objects when the XML could as well
be generated directly from the database. The new classes act
as a kind of data-storage abstraction and they are especially
handy once you decide to pick a different storage layer
instead of a database.

As we have finished building our data structure, let us take a look at how several
PEAR packages can be used to generate XML documents based on the data.

Creating XML Documents with XML_Util
XML_Util is a utility class for working with XML documents. It provides several
methods that execute common XML-related tasks. All of these methods can be
invoked statically, so you never need to create a new instance of XML_Util in
your scripts in order to use its features; all that is needed is requiring the class in
your code:

require_once 'XML/Util.php';

Once you have included the XML_Util class, it provides the methods to:

Create the XML and document type declaration
Create opening and closing tags
Create complete tags (with the tag content) or other XML elements
like comments
Replace XML entities in any string
Create XML attributes from associative arrays
Help you with other XML related tasks

As the task at hand is to create an XML document from PHP objects, this package
seems perfect. The API of all the methods XML_Util offers is quite simple, so to
generate an opening tag, all you need to do is call the createStartElement()
method and pass the name of the XML tag:

$label = XML_Util::createStartElement('label');

As this will only produce the string <label>, you might wonder what the benefits
of using XML_Util are. The benefits come into play when you need to create a tag
that also contains attributes. Those can be passed to createStartElement() as an
associative array:

•

•

•

•

•

•

Chapter 3

[93]

$attributes = array(
 'name' => 'Sun Records',
 'location' => 'Nashville'
);
$label = XML_Util::createStartElement('label', $attributes);

This code snippet will create an opening tag with the attributes specified in the array.
XML_Util will automatically sort the attributes alphabetically.

<label location="Nashville" name="Sun Records">

The createStartElement() method also provides support for XML namespaces; you
just need to pass the namespace URI as the third parameter. Furthermore we can also
influence how the tag is rendered: if a tag has a lot of attributes the readability often
suffers as the line gets extremely long. As whitespace in XML is ignored, XML_Util is
able to split the tag into multiple lines, and place each attribute in its own line. Here is
an example that uses the namespace support as well as multi-line attributes:

$attributes = array(
 'name' => 'Sun Records',
 'location' => 'Nashville'
);
$label = XML_Util::createStartElement('records:label', $attributes,
 'http://www.example.com', true);

And this is what the tag looks like:

<records:label location="Nashville"
 name="Sun Records"
 xmlns:records="http://www.example.com">

XML_Util also provides means to create the closing tags using the
createEndElement() method:

$label = XML_Util::createEndElement('label');

Of course, this method does not support any additional parameters as a closing tag
does not contain anything except the tag name. If you want to create the opening
and closing tag at once and even pass in the content of the tag to be generated,
then createTag() is the method of your choice. Like the createStartElement()
method, createTag() accepts the name of the tag and an array with attributes as
the first two arguments. However starting with the third argument, the method
signatures differ. When using createTag() you may pass the content of the tag as
the third parameter:

$attributes = array(
 'name' => 'Sun Records',

Working with XML

[94]

 'location' => 'Nashville'
);
$tag = XML_Util::createTag('label', $attributes, 'Tag content');

The method accepts more arguments, which influence how the tag is created; you
may pass the following arguments in this order; use null if you do not want to pass
in a value.

URI of the namespace, if any.
Whether to replace XML entities in the tag content (true) or not (false).
This is useful if the tag will contain more tags and you do not want the
entities escaped.
Whether to split the attributes among several lines (true), or not (false).

If the last parameter is set to true, you may pass two additional arguments to control
the indenting and the line breaks used to split the attribute list among several lines.
In 99% of all cases the default values for these parameters will be sufficient.

As you have learned how to create XML tags using XML_Util, the only thing left to
learn is how to create an XML declaration and you will know enough to create the
complete XML document from the object tree. XML_Util offers a method that creates
the XML declaration for you:

$decl = XML_Util::getXMLDeclaration('1.0', 'ISO-8859-1');

This method accepts three parameters: the XML version, the desired encoding, and
a Boolean flag to indicate whether the generated document will be a standalone
document or not.

These four methods are the only ones you will need to create the XML document.
All that is left is to iterate over the objects using several foreach loops and pass the
object properties to the methods of XML_Util. If you want to send the document to
the browser, you can use echo to directly output the result.

So the complete script to create the XML document from the object tree is:

require_once 'XML/Util.php';
echo XML_Util::getXMLDeclaration('1.0', 'ISO-8859-1');
echo XML_Util::createStartElement('labels') . "\n";

foreach ($labels as $label) {
 echo XML_Util::createStartElement('label',
 array('name' => $label->name)) . "\n";
 echo XML_Util::createStartElement('artists') . "\n";
 foreach ($label->artists as $artist) {
 echo XML_Util::createStartElement('artist',

•

•

•

Chapter 3

[95]

 array('id' => $artist->id)) . "\n";
 echo XML_Util::createTag('name', array(), $artist->name) . "\n";
 echo XML_Util::createStartElement('records') . "\n";
 foreach ($artist->records as $record) {
 echo XML_Util::createStartElement('record', array(
 'id' => $record->id,
 'released' => $record->released
)
) . "\n";
 echo XML_Util::createTag('name', array(), $record->name) .
 "\n";
 echo XML_Util::createEndElement('record') . "\n";
 }
 echo XML_Util::createEndElement('records') . "\n";

 echo XML_Util::createEndElement('artist') . "\n";
 }
 echo XML_Util::createEndElement('artists') . "\n";
 echo XML_Util::createEndElement('label') . "\n";
}
echo XML_Util::createEndElement('labels') . "\n";

After including the file that contains the XML_Util class, we create the
XML declaration that precedes the document and supply the encoding we
want to use. Then, the opening tag of the root element is created using the
createStartElement() method. After that, we iterate over all Label objects that
are stored in the $labels array; actually there is only one element, the Sun Records
label, but you do not need to change the code after adding additional objects. For
each record label we create a <label> element and pass the $name property of the
Label object to the list of attributes:

echo XML_Util::createStartElement('label',
 array('name' => $label->name)) . "\n";

Inside this loop, we iterate over all Artist objects that are stored in the $artists
property of the Label object after an opening <artists> tag has been created. For
each of the Artist objects we create a matching <artist> tag and pass the value
of the $id property to the attributes. Finally inside the second loop we only need
to iterate over all Record objects that have been added to the $records property of
the Artist object and create the matching <record/> tag. Of course these tags are
surrounded by a <records/> tag. At the end of each loop, closing tags are created to
match the opening tags that have been created before the loop so the document will
be well-formed.

Working with XML

[96]

If you run this script, it will output the exact same XML document that we started
this chapter with, except that the tags will not be indented. XML_Util provides
methods to create single tags or any other XML elements, but it will not create
a complete document for you. You will learn about other PEAR packages that
provide this feature later in this chapter. You will later use packages that allow
passing virtually any data structure, instead of just strings or associative arrays, and
transform your data to an XML document.

Additional Features
XML_Util provides some more methods that come in handy when working with
XML. If you are generating XML dynamically and do not know how the tags will be
named, you can use XML_Util to check whether a string can be used as a tag name.

$result = XML_Util::isValidName('My tag name');
if (PEAR::isError($result)) {
 echo 'No valid tag name: ' . $result->getMessage();
} else {
 echo 'Tag name is valid';
}

If the string you passed to the method can be used as a tag name in XML, the method
will return true. If the string cannot be used as a tag name as it violates XML rules,
isValidName() returns a PEAR_Error object that contains information on the rule
that is violated. So if you run this script, it will output:

No valid tag name: XML names may only contain alphanumeric chars, period,
hyphen, colon and underscores

Another useful feature is to replace disallowed characters with their respective
entities in any string by using the replaceEntities() method:

echo XML_Util::replaceEntities('This text contains " & \'.');

After applying this method to a string, you can safely use it in any XML document.
To reverse the result of this method, you can use the reverseEntities() method of
XML_Util.

To learn about new features of XML_Util or take a close look at the API, you can
browse the end-user documentation online on the PEAR website: http://pear.
php.net/manual/en/package.xml.xml-util.php.

Chapter 3

[97]

Creating XML Documents with
XML_FastCreate
XML_FastCreate is a package that creates XML in a very fast and efficient manner
(but you've probably already guessed this from the name, haven't you). To do
this, it takes a totally different approach than XML_Util. XML_FastCreate does not
create fragments of an XML document, but always creates a complete well-formed
document. So XML_FastCreate ensures that you always get a valid XML document,
whereas with XML_Util you get valid tags but still are able to omit closing tags or
make mistakes when it comes to tag nesting.

XML_FastCreate can be used to:

Create a string that contains an XML document
Create a tree structure in memory that contains the XML document

You can use either approach with the same API to create an XML document, as
XML_FastCreate provides different drivers for these two different ways. So instead
of creating a new XML_FastCreate instance by using the new operator you must
always use the factory method of the XML_FastCreate class.

require_once 'XML/FastCreate.php';
$xml = XML_FastCreate::factory('Text');

In this case the factory method returns a driver that will directly create a string
containing the XML document. We will be using this driver for most of the following
examples as it's easier to use and more stable than the alternative driver based on the
XML_Tree package. If you still would like to use the driver based on XML_Tree, be
advised that the following examples might not work as expected, as some features
are not supported by this driver. Furthermore you will need to use version 2.0.0 of
XML_Tree, which is still in the beta state. The difference between the text driver
and the XML_Tree-based driver is that the latter allows you to modify the XML
document as an object before it is written to a string. The text driver will directly
generate a string containing the XML document, which cannot be easily modified
(unless you resort to regular expressions).

Now that you have obtained a new instance of XML_FastCreate you will probably
want to create the tags of the document. This is very easy! All you need to do is call a
method with the name of the tag you want to create and pass the text that should be
enclosed between the opening and closing tag:

$xml->artist('Elvis Presley');

•

•

Working with XML

[98]

This way you have added a new <artist/> tag to your XML document. You can
print the resulting document to STDOUT using the toXML() method:

$xml->toXML();

If you run this code it will display:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<artist>Elvis Presley</artist>

Now you are probably wondering how XML_FastCreate knew that you need to
create an <artist/> tag and offered the artist() method. As an XML document
might contain virtually any tag, XML_FastCreate would have to offer an unlimited
number of methods to be able to create all tags. You probably already guessed that
XML_FastCreate does not implement all these methods; instead it uses a technique
called overloading.

Overloading is supported natively by PHP5 but XML_FastCreate also supports PHP4
if you enable the overload extension (which is enabled by default in all versions of
PHP4.3.x). If you want to use XML_FastCreate with PHP4, you can learn more about
the overloading extension in the PHP manual at http://www.php.net/overload. In
the following examples we will focus on the overloading support provided by PHP5.

Interlude: Overloading in PHP5
In order to understand how XML_FastCreate works, you need to understand the
basic principles behind object overloading. Overloading allows you to intercept calls
to undefined methods of an object. Consider the following code snippet:

class Bird {
 public function fly() {
 print "I'm flying.\n";
 }
}

$bird = new Bird();
$bird->fly();
$bird->swim();

If you run this script, you will see the following output:

I'm flying.

Fatal error: Call to undefined method Bird::swim() in c:\wamp\www\books\
packt\pear\xml\overloading.php on line 10

Chapter 3

[99]

This script terminates with a fatal error as you tried to call the swim() method on
the Bird object and the method has not been implemented. This is where object
overloading comes into play: overloading allows you to intercept method calls (and
property access) to undefined methods (and properties). In order to intercept the call
to the undefined method swim() you need to implement a magic __call() method
that has to accept two arguments:

1. The name of the original method that has been called
2. An array containing all arguments that have originally been passed to the

method call
After adding this method to the Bird class it might look like this:

class Bird {
 public function fly() {
 print "I'm flying.\n";
 }
 public function __call($method, $args) {
 print "I can't $method.\n";
 }
}

Now if you run the script again, you will get a different output:

I'm flying.

I can't swim.

Whenever you call a method that has not been implemented in the class, the
__call() method will be invoked instead:

$bird->playPoker();
$bird->raiseTaxes();

Of course the output is as expected:

I can't playPoker.

I can't raiseTaxes.

Back to XML
This is exactly how XML_FastCreate works; whenever you call any method that
matches the name of the tag that you want to create, PHP will invoke the __call()
method instead and pass the name of the tag you want to create as well as the
tag content.

Working with XML

[100]

XML_FastCreate also allows you to nest tags by nesting method calls:

require_once 'XML/FastCreate.php';

$xml = XML_FastCreate::factory('Text');
$xml->artist(
 $xml->name('Elvis Presley'),
 $xml->hometown('Memphis')
);

$xml->toXML();

The output of this code is an XML document with the following structure
(indentations have been added for improved readability):

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<artist>
 <name>Elvis Presley</name>
 <hometown>Memphis</hometown>
</artist>

Until now, all tags contained only text content and did not include any attributes.
But adding attributes to the tags of your XML content is also extremely easy. As with
XML_Util, you have to supply the list of attributes for an XML tag as an associative
array. This array has to be passed in as the first parameter to any method call that
creates an XML tag. To add two attributes to the root tag of the previously generated
XML document, make a small change:

require_once 'XML/FastCreate.php';

$xml = XML_FastCreate::factory('Text');
$xml->artist(
 array(
 'id' => 56,
 'label' => 'Sun Records'
),
 $xml->name('Elvis Presley'),
 $xml->hometown('Memphis')
);

$xml->toXML();

The resulting document now has the two attributes id and label set in the root tag:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<artist id="56" label="Sun Records">
 <name>Elvis Presley</name>

Chapter 3

[101]

 <hometown>Memphis</hometown>
</artist>

The next thing that may strike you is that XML_FastCreate automatically creates an
XML declaration for the document using UTF-8 encoding, while we have been using
ISO-8859-1 in the previous examples. Do not worry! XML_FastCreate enables you
to set a different encoding. When creating an instance of an XML_FastCreate driver
using the factory method, you may pass a list of options as a second argument; one
of these options can be used to set the encoding of the resulting document:

$options = array(
 'encoding' => 'ISO-8859-1'
);
$xml = XML_FastCreate::factory('Text', $options);

The encoding is only one of the possible options that can be set via the factory
method; the following table shows a list of the most important options. These options
are supported by both drivers included in the current version of XML_FastCreate.
Take a look at the source code and inline documentation of the drivers and the base
class to learn more about additional options that are not supported by both drivers.

Option name Description Default value
version The XML version to use. 1.0
encoding The XML encoding to use. UTF-8
standalone Whether the document is standalone or not. No
indent Whether to apply indentations to the XML document

(requires the XML_Beautifier package).
False

quote Whether to automatically replace special characters
with their entities.

True

doctype Which document type declaration should be added. No value
exec External program that should be used to validate the

XML document according to the specified DTD.
No value

file File to write the validation output to. If no file is
specified, the validation output will be printed to
the screen.

No value

Working with XML

[102]

The XML_Beautifier package

XML_Beautifier is a package that helps you make an XML
document more readable by humans. XML documents do
not require line breaks or indentation to be well-formed.
Any application that is processing an XML document
simply relies on the opening and closing tags that structure
the contained information.

However, line breaks and indentation help humans easily
grasp the structure of the XML document. So if you need
to display an XML document that is not structured using
whitespace to a user, XML_Beautifier comes in handy. It is
able to read any XML document and apply formatting rules
to it (like your editor is able to format PHP code). It will add
line breaks, indentation, automatically wrap long lines, etc.

With the new DOM extension in PHP5, XML_Beautifier has
become less important, as this extension is able to format an
XML document to a certain degree (although it is not able to
mimic all features of XML_Beautifier).

Now you know nearly everything you need to create the XML containing the record
labels from the objects we built previously. There's only one thing left that we
haven't covered, yet. When creating an XML tag by calling any method, we always
ignored the return value of the method. However these methods will return an XML
snippet, depending on the driver you are using. When using the Text driver, the
method will return a string, while the XML_Tree will return an instance of the XML_
Tree_Node class.

Creating the XML Document
If you are using the Text driver, the different tags created by XML_FastCreate can
be joined to one XML document using the standard string functions provided by
PHP. All that's left for you to do is iterate over the object structures in three nested
loops: one for the record labels, one for the artists of each record label, and one for
the records of each artist. While this approach is quite similar to the solution using
XML_Util, there is one important difference: XML_FastCreate always creates the
complete XML element (that means the opening and the closing tag) at once. As a
consequence you always have to compile the content of the tag before creating the
tag; this leads to the document being generated from the inside-out. The first tags
created are the <record/> tags, followed by the <artist/> tags, again followed by
the <label/> tags. Finally, in the last lines of the script, we create the <labels/> tag,
which surrounds all other created tags. When using XML_Util we created the tags

Chapter 3

[103]

in the same order as we wanted them to appear in the document. When using XML_
FastCreate, you will have to think about the correct nesting order, which makes
creating XML documents a bit more complicated if you are not familiar with this
type of recursion.

The complete script that creates the desired XML document from the object tree
using XML_FastCreate is:

require_once 'XML/FastCreate.php';

// set the basic options for the XML document
$options = array(
 'encoding' => 'ISO-8859-1',
 'standalone' => 'yes'
);
// Get a new instance with the 'Text' driver
$xml = XML_FastCreate::factory('Text', $options);

// This variable will store all labels as XML
$labelsXML = '';

// Traverse the record labels in the array
foreach ($labels as $label) {

 // This variable will store all artists of the label as XML
 $artistsXML = '';

 // traverse all artists
 foreach ($label->artists as $artist) {

 // This variable will store all records of the artist as XML
 $records = '';

 // traverse all records
 foreach ($artist->records as $record) {
 $recordAtts = array(
 'id' => $record->id,
 'released' => $record->released
);
 // Create and append one <record/>
 $records .= $xml->record($recordAtts, $xml->name(
 $record->name));
 }
 $artistAtts = array('id' => $artist->id);

Working with XML

[104]

 // Create and append one <artist/>
 $artistsXML .= $xml->artist($artistAtts,
 $xml->records($records));
 }
 $labelAtts = array('name' => $label->name);

 // Create and append one <label/>
 $labelsXML .= $xml->label($labelAtts, $xml->artists($artistsXML));
}
$xml->labels($labelsXML);

// Send the resulting XML to STDOUT
$xml->toXML();

For each loop we create a new variable and initialize it with an empty string
($labelsXML, $artistsXML, and $recordsXML). The inner loops will then store their
results in these variables and after all inner loops are completed, the variables will
be used as content for the surrounding <labels>, <artists>, or <records> tags. If
you run this script you will get the same output as in the XML_Util example. If you
have the package XML_Beautifier installed, you can also enable the indent option of
XML_FastCreate, which will then return nicely indented XML.

Pitfalls in XML_FastCreate
While XML_FastCreate may seem more powerful than XML_Util (and in a lot of
cases certainly is), do not overlook the following pitfalls:

As overloading only intercepts calls to non-existent methods, there are some
reserved words (the names of all methods provided by XML_FastCreate),
that cannot be used as tag names. One of these methods is the xml() method,
which is used by the __call() interceptor to create the actual tags. So if
you are invoking $fastcreate->xml('foo'), the method call will not be
intercepted as the method you are calling exists. So this will not produce the
desired result and you will have to use $fastcreate->xml('xml', 'foo');
instead, as you will have to use the correct method signature for the xml()
method.
XML_FastCreate heavily relies on alpha or beta packages (XML_DTD, XML_
Tree), which might lead to backward compatibility breaks when upgrading
one of these packages. This could even mean that XML_FastCreate suddenly
stops working.
Creating XML documents with a dynamic structure is extremely complicated
using the XML_Tree driver of XML_FastCreate. This driver returns objects
instead of strings when creating tags, so you cannot just use the built-in
string functions of PHP to create a larger document that uses dynamic tag

•

•

•

Chapter 3

[105]

names and data. This driver should not be used for documents that contain
complex structures determined at run time.

Creating XML Documents with XML_Serializer
While XML_Serializer is a package for creating XML documents, it takes a totally
different approach from the last two packages, XML_Util and XML_FastCreate. When
working with one of these packages, you are creating the document tag by tag with
each method call. When using XML_Serializer, you are calling one method to create
the complete document at once. It will extract the raw information from an array
or an object and convert it to an XML document. While this may sound inflexible,
when compared to the previous approaches, XML_Serializer still is one of the most
powerful packages when creating XML documents. It can serialize any data that you
pass in as an XML document. So it can create an XML-based string representation
of any data. Think of it as the XML equivalent of the built-in serialize() function,
which lets you create a string representation of any data, be it a deeply nested array
or a complex tree of objects. This string representation may then be saved in a file,
the user session, or even a database. PHP also provides an unserialize() function
to restore the original data from the string representation. In the second part of this
chapter, you will also learn about the matching XML_Unserializer class, which does
this for the XML documents created by XML_Serializer.

The typical way to work with XML_Serializer follows these steps:

Include XML_Serializer and create a new instance
Configure the instance using options
Create the XML document
Fetch the document and do whatever you want with it

If you are using XML_Serializer in real-life applications, it will never get any harder
than this. As you only call one method to actually create the XML document, you
will need to pass all information that should be contained in the XML document
to this method. To make life as easy as possible, XML_Serializer accepts virtually
any input to this method as data for the generated XML document. But now enough
theory, the best way to describe XML_Serializer is to show what it can do through
an example:

// include the class
require_once('XML/Serializer.php');

// create a new object
$serializer = new XML_Serializer();

•

•

•

•

Working with XML

[106]

// create the XML document
$serializer->serialize('This is a string');

// fetch the document
echo $serializer->getSerializedData();

In this example, we followed exactly the steps described above and if you execute it
you will get:

<string>This is a string</string>

This is not a complex XML document, and would have been easier to create using
XML_Util, XML_FastCreate, or even PHP's string concatenation. But if you take a
look at the next example, you will probably change your opinion:

$data = array(
 'artist' => 'Elvis Presley',
 'label' => 'Sun Records',
 'record' => 'Viva Las Vegas'
);
// include the class
require_once('XML/Serializer.php');

// create a new object
$serializer = new XML_Serializer();

// create the XML document
$serializer->serialize($data);

// fetch the document
echo $serializer->getSerializedData();

In this example, only two things have changed:

A variable $data has been created and contains an array.
The $data variable is passed to the serialize() method instead of a string.

The rest of the script remained unchanged and still follows the same steps mentioned
above. Now let us take a look at the output of this script:

<array>
<artist>Elvis Presley</artist>
<label>Sun Records</label>
<record>Viva Las Vegas</record>
</array>

Creating this XML document would have been a lot harder using a different approach.
If we added more data and nested the XML tags deeper it would be harder to create

•

•

Chapter 3

[107]

the document using XML_Util or XML_FastCreate. With XML_Serializer, the
needed code always stays the same and you could as well pass the following data to
serialize() and not change anything else:

$data = array(
 'artist' => array(
 'name' => 'Elvis Presley',
 'email' => 'elvis@graceland.com'
),
 'label' => 'Sun Records',
 'record' => 'Viva Las Vegas'
);

As expected, the script will generate the following XML document:

<array>
<artist>
<name>Elvis Presley</name>
<email>elvis@graceland.com</email>
</artist>
<label>Sun Records</label>
<record>Viva Las Vegas</record>
</array>

Now you know how XML_Serializer basically works: You pass any PHP data
structure to the serialize() method and it will create XML for you based on the
data you passed. While generating the XML document, XML_Serializer tries to
guess how the document should be created, i.e. it uses the type of the data as root
tag name, array keys as tag names, and nests the tags in the same manner the arrays
have been nested. The previously mentioned options allow you to influence how the
guessing will work; we will now explain how to use the most important options of
XML_Serializer.

XML_Serializer Options
As of version 0.17.0, XML_Serializer offers 27 different options. For each of these
options, XML_Serializer provides a constant that starts with XML_SERIALIZER_
OPTION_, followed by the name of the option. To set the values of these options, use
one of the following techniques:

Pass an associative array containing the selected options and their values to
the constructor of XML_Serializer.
Use the setOption() and setOptions() methods of XML_Serializer.
Pass an associative array containing the selected options and their values as a
second argument to the serialize() method.

•

•

•

Working with XML

[108]

While the first two techniques are equivalent and can be used to set the options for
all following XML documents, the last one will only override the options for the
document that is created by the current call to serialize(). For most cases, the
multiple usage of setOption() is recommended to ensure better readability of
your scripts.

Now, that you know how to set options for XML_Serializer, let's get back to the XML
document that has been created and try using some options to influence the result.
The first thing that may strike you is that the XML declaration has been missing from
the created XML document. Of course it would be easy to add it after XML_Serializer
has created the document, but it is even easier to let XML_Serializer do the work for
you. All you need to add are two lines of code:

// include the class
require_once('XML/Serializer.php');

// create a new object
$serializer = new XML_Serializer();

// set options
$serializer->setOption(XML_SERIALIZER_OPTION_XML_DECL_ENABLED, true);
$serializer->setOption(XML_SERIALIZER_OPTION_XML_ENCODING,
 'ISO-8859-1');

// create the XML document
$serializer->serialize($data);

// fetch the document
echo $serializer->getSerializedData();

Now your document will have a valid XML declaration that defines the encoding
you are using in your document. Next, we want to make some beauty corrections to
the document by indenting the tags nicely and choose a different tag name for the
root, as array is not very self-explanatory. Again, we only add two new lines:

$serializer->setOption(XML_SERIALIZER_OPTION_INDENT, ' ');
$serializer->setOption(XML_SERIALIZER_OPTION_ROOT_NAME,
 'artist-info');

If you take a look at the result, you will see that the XML document looks a lot better:

<?xml version="1.0" encoding="ISO-8859-1"?>
<artist-info>
 <artist>
 <name>Elvis Presley</name>
 <email>elvis@graceland.com</email>
 </artist>

Chapter 3

[109]

 <label>Sun Records</label>
 <record>Viva Las Vegas</record>
</artist-info>

Adding Attributes
XML documents seldom consist only of tags without attributes. So you might want
to use XML_Serializer to create tags that contain attributes as well as nested tags and
character data. And of course, achieving this is as easy as everything else we have
done using XML_Serializer before.

XML_Serializer is able to automatically convert scalar variables (strings, Boolean
values, integers, etc.) to attributes of the parent tag. All that is required is setting
one option:

$serializer->setOption(XML_SERIALIZER_OPTION_SCALAR_AS_ATTRIBUTES,
 true);

If you add this to your script and run it again, the resulting XML document will look
totally different:

<?xml version="1.0" encoding="ISO-8859-1"?>
<artist-info label="Sun Records" record="Viva Las Vegas">
 <artist email="elvis@graceland.com" name="Elvis Presley"/>
</artist-info>

If you only want to convert the string values stored in the artist array to attributes
of the <artist/> tag, but keep the <label/> and <record/> tags, this is possible
as well:

$serializer->setOption(XML_SERIALIZER_OPTION_SCALAR_AS_ATTRIBUTES,
 array(
 'artist' => true
)
);

You can even selectively choose which value you want to add as an attribute on a
per-tag basis. If you want the email address stored in an attribute, but still wish to
add a nested tag for the name of an artist, all you need to change is one line in
your script:

$serializer->setOption(XML_SERIALIZER_OPTION_SCALAR_AS_ATTRIBUTES,
 array(
 'artist' => array('email')
)
);

Working with XML

[110]

If you execute the script now, it will output:

<?xml version="1.0" encoding="ISO-8859-1"?>
<artist-info>
 <artist email="elvis@graceland.com">
 <name>Elvis Presley</name>
 </artist>
 <label>Sun Records</label>
 <record>Viva Las Vegas</record>
</artist-info>

Another option that allows you to add attributes to the XML document is ROOT_
ATTRIBS; you may pass an associative array with this option to build the attributes of
the root element.

Treating Indexed Arrays
Most musical artists release more than one record and they often sign contracts with
more than one label during their career. If you apply this to our simple example, you
will probably end up with a data structure similar to the following array:

$data = array(
 'artist' => array(
 'name' => 'Elvis Presley',
 'email' => 'elvis@graceland.com'
),
 'labels' => array(
 'Sun Records',
 'Sony Music'
),
 'records' => array(
 'Viva Las Vegas',
 'Hound Dog',
 'In the Ghetto'
)
);

Since XML_Serializer will transform any data to XML, you will probably pass this
data to XML_Serializer as well and hope that it creates useful XML. So if you try and
run the script, it will output an XML document looking like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<artist-info>
 <artist email="elvis@graceland.com">
 <name>Elvis Presley</name>
 </artist>

Chapter 3

[111]

 <labels>
 <XML_Serializer_Tag>Sun Records</XML_Serializer_Tag>
 <XML_Serializer_Tag>Sony Music</XML_Serializer_Tag>
 </labels>
 <records>
 <XML_Serializer_Tag>Viva Las Vegas</XML_Serializer_Tag>
 <XML_Serializer_Tag>Hound Dog</XML_Serializer_Tag>
 <XML_Serializer_Tag>In the Ghetto</XML_Serializer_Tag>
 </records>
</artist-info>

What probably strikes you as soon as the document is outputted to your screen is
the frequent use of the <XML_Serializer_Tag/> in the document. If you are familiar
with XML, you probably already guessed why it is there. When serializing an array,
XML_Serializer uses the array key as the name for the tag and the value as the
content of the tag. In this example, the data contains two indexed arrays and they
contain keys like "0", "1" and "2". But <0/>, <1/>, and <2/> are not valid XML tags.
Since XML_Serializer can create a well-formed XML document, it will use a default
tag name instead of creating an invalid tag. Of course, it is possible to change the
name of the default tag:

$serializer->setOption(XML_SERIALIZER_OPTION_DEFAULT_TAG, 'item');

Once you have added this line to the script, you will get a slightly different XML
document, as all <XML_Serializer_Tag/> occurrences have been replaced by
<item/> tags. But still XML_Serializer allows you to be more flexible when it
comes to choosing default tags. The nicest solution would be if the <records/>
tag contained <record/> tags for each record and the <labels/> tag contained a
<label/> tag for each label the artist signed a contract with. This is easily possible,
as XML_Serializer allows you to specify a default tag name depending on the
context. Instead of a string containing the default tag, you have to pass an associative
array to the DEFAULT_TAG option. The array keys define the names of the parent tag
and the array values define the name of the default tag for the specified parent:

$serializer->setOption(XML_SERIALIZER_OPTION_DEFAULT_TAG,
 array(
 'labels' => 'label',
 'records' => 'record'
)
);

So the resulting document is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<artist-info>
 <artist email="elvis@graceland.com">
 <name>Elvis Presley</name>

Working with XML

[112]

 </artist>
 <labels>
 <label>Sun Records</label>
 <label>Sony Music</label>
 </labels>
 <records>
 <record>Viva Las Vegas</record>
 <record>Hound Dog</record>
 <record>In the Ghetto</record>
 </records>
</artist-info>

Now you have learned how to use the most important options of XML_Serializer.
Before implementing a script that creates the desired XML from the pre-built object
tree, you might want to take a look at all other options of XML_Serializer listed in the
following table.

Option name Description Default value
INDENT String used for indenting tags. Empty
LINEBREAKS String used for line breaks. \n

XML_DECL_ENABLED Whether to add an XML declaration to the
resulting document.

false

XML_ENCODING Encoding to be used for the document if
XML_DECL_ENABLED is set to true.

UTF-8

DOCTYPE_ENABLED Whether to add a document type declaration
to the document.

false

DOCTYPE Filename of the document declaration file;
only used if DOCTYPE_ENABLED is set
to true.

No value

ROOT_NAME Name of the root tag. Depends on the
serialized data

ROOT_ATTRIBS Attributes of the root tag. Empty array
NAMESPACE Namespace to use for the document. No value
ENTITIES Whether to encode XML entities in character

data and attributes.
true

RETURN_RESULT Whether serialize() should return the
result or only return true if the serialization
was successful.

false

CLASSNAME_AS_
TAGNAME

Whether to use the name of the class as tag
name, when serializing objects.

false

Chapter 3

[113]

Option name Description Default value
DEFAULT_TAG Name of the default tag. Used when

serializing indexed arrays. Can either use
a string or an associative array to set this
option depending on the parent tag.

XML_
Serializer_
Tag

TYPEHINTS Whether to add type information to the tags. false

ATTRIBUTE_TYPE Name of the attribute that stores the type
information, if TYPEHINTS is enabled.

_type

ATTRIBUTE_CLASS Name of the attribute that stores the class
name, if TYPEHINTS is enabled.

_class

ATTRIBUTE_KEY Name of the attribute that stores the name of
the array key, if TYPEHINTS is enabled.

_originalKey

SCALAR_AS_
ATTRIBUTES

Whether scalar values (strings, integers, etc.)
should be added as attributes.

false

PREPEND_
ATTRIBUTES

String to prefix attributes' names with. No value

INDENT_ATTRIBUTES String to use for attribute indentation, when
using one line per attribute. Can be set to
_auto.

No value

IGNORE_NULL Whether to ignore null values when
serializing objects or arrays.

false

TAGMAP Associative array to map keys and property
names to different tag names.

No value

MODE Which mode to use for serializing indexed
arrays, either XML_SERIALIZER_MODE_
DEFAULT or XML_SERIALIZER_MODE_
SIMPLEXML.

DEFAULT

ATTRIBUTES_KEY All values stored with this key will be
serialized as attributes.

No value

CONTENT_KEY All values stored with this key will be
directly used as character data instead
of creating another tag. Must be used in
conjunction with ATTRIBUTES_KEY.

No value

COMMENT_KEY All values stored with this key will be
converted to XML comments.

No value

ENCODE_FUNC Name of a PHP function or method that will
be applied to all values before serializing.

No value

Creating the XML Document from the Object Tree
As you are now familiar with XML_Serializer, let us go back to the initial task we
need to accomplish and create an XML document from the objects we instantiated

Working with XML

[114]

that contained information about record labels, artists, and their recorded albums. As
XML_Serializer accepts any PHP variable as input for the XML document, the easiest
way to start this task is just passing the $labels variable, which contains one or
more Label objects. Additionally we set some options that we are already sure of:

// include the class
require_once('XML/Serializer.php');

// create a new object
$serializer = new XML_Serializer();

// configure the XML declaration
$serializer->setOption(XML_SERIALIZER_OPTION_XML_DECL_ENABLED, true);
$serializer->setOption(XML_SERIALIZER_OPTION_XML_ENCODING,
 'ISO-8859-1');

// configure the layout
$serializer->setOption(XML_SERIALIZER_OPTION_INDENT, ' ');
$serializer->setOption(XML_SERIALIZER_OPTION_LINEBREAKS, "\n");

// create the XML document
$serializer->serialize($labels);

// fetch the document
echo $serializer->getSerializedData();

This code will create the following XML document, which already looks a lot like the
XML document we need to create:

<?xml version="1.0" encoding="ISO-8859-1"?>
<array>
 <XML_Serializer_Tag>
 <name>Sun Records</name>
 <artists>
 <XML_Serializer_Tag>
 <id>1</id>
 <name>Elvis Presley</name>
 <records>
 <XML_Serializer_Tag>
 <id>SUN 209</id>
 <name>That's All Right (Mama) &
 Blue Moon Of Kentucky</name>
 <released>July 19, 1954</released>

Chapter 3

[115]

 </XML_Serializer_Tag>
 <XML_Serializer_Tag>
 <id>SUN 210</id>
 <name>Good Rockin' Tonight</name>
 <released>September, 1954</released>
 </XML_Serializer_Tag>
 </records>
 </XML_Serializer_Tag>
 <XML_Serializer_Tag>
 <id>2</id>
 <name>Carl Perkins</name>
 <records>
 <XML_Serializer_Tag>
 <id>SUN 224</id>
 <name>Gone, Gone, Gone</name>
 <released>July 19, 1954</released>
 </XML_Serializer_Tag>
 </records>
 </XML_Serializer_Tag>
 </artists>
 </XML_Serializer_Tag>
</array>

The main issues with this document are:

The root element should be <labels/>.
<XML_Serializer_Tag/> instances should be replaced with <label/>,
<artist/>, and <record/> tags.
Some tags (like <id/>, <name/>, and <released/>) should be replaced by
matching elements.

You have already learned how to fix these issues in the previous examples, by setting
the appropriate options:

The root element can be changed using the ROOT_NAME option.
The <XML_Serializer_Tag/> instances can be replaced using the
DEFAULT_TAG option and passing an array to this option.
The SCALAR_AS_ATTRIBUTES option can be used to influence which
information will be serialized as attributes instead of tags.

•

•

•

•

•

•

Working with XML

[116]

Here is the complete script with all options set correctly. The changes have been
highlighted:

// include the class
require_once('XML/Serializer.php');

// create a new object
$serializer = new XML_Serializer();

// configure the XML declaration
$serializer->setOption(XML_SERIALIZER_OPTION_XML_DECL_ENABLED, true);
$serializer->setOption(XML_SERIALIZER_OPTION_XML_ENCODING,
 'ISO-8859-1');

// configure the layout
$serializer->setOption(XML_SERIALIZER_OPTION_INDENT, ' ');
$serializer->setOption(XML_SERIALIZER_OPTION_LINEBREAKS, "\n");

// configure tag names
$serializer->setOption(XML_SERIALIZER_OPTION_ROOT_NAME, 'labels');
$tagNames = array(
 'labels' => 'label',
 'artists' => 'artist',
 'records' => 'record'
);
$serializer->setOption(XML_SERIALIZER_OPTION_DEFAULT_TAG, $tagNames);

$attributes = array(
 'label' => array('name'),
 'artist' => array('id'),
 'record' => array('id', 'released')
);
$serializer->setOption(XML_SERIALIZER_OPTION_SCALAR_AS_ATTRIBUTES,
 $attributes);

$result = $serializer->serialize($labels);
echo $serializer->getSerializedData();

Putting Objects to Sleep
The last example showed that XML_Serializer can work with objects in the same way
it works with arrays. It will fetch all public properties and serialize them to the XML
document as if they were values stored in an array. However, in some cases this
might not be the desired result. Take the following code for example:

class UrlFetcher {
 public $url = null;

Chapter 3

[117]

 public $html = null;

 public function __construct($url) {
 $this->url = $url;
 $this->html = file_get_contents($this->url);
 }
}
$pear = new UrlFetcher('http://pear.php.net');

$serializer = new XML_Serializer();
$serializer->setOption(XML_SERIALIZER_OPTION_XML_DECL_ENABLED, true);
$serializer->setOption(XML_SERIALIZER_OPTION_XML_ENCODING,
 'ISO-8859-1');
$serializer->setOption(XML_SERIALIZER_OPTION_INDENT, ' ');
$serializer->serialize($pear);
echo $serializer->getSerializedData();

If you instantiate a new object of the class UrlFetcher, this object will fetch the
HTML content from the URL content specified in the constructor. If you pass the
object to XML_Serializer, it will extract all public properties and add them to the
resulting XML document, which will look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<UrlFetcher>
 <url>http://pear.php.net</url>
 <html><?xml version="1.0" encoding="iso-8859-
1" ?><!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
transitional.dtd">
...a lot of HTML code has been removed...
 </html>
</UrlFetcher>

In this case you probably do not want XML_Serializer to put all the HTML code from
pear.php.net into the XML document. This can be easily avoided using a technique
that you might know from serializing objects using PHP's serialize() function. If
the object that will be serialized by XML_Serializer implements a __sleep() method,
this method will be invoked and the return value used for the serialization. The
__sleep() method should return an array with the names of the object properties
that should be included in the result document. To prohibit serialization of the $html
property, only a small change to the UrlFetcher class is necessary:

class UrlFetcher {
 public $url = null;
 public $html = null;

Working with XML

[118]

 public function __construct($url) {
 $this->url = $url;
 $this->html = file_get_contents($this->url);
 }

 public function __sleep() {
 return array('url');
 }
}

With this change applied to the code, the resulting document will be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<UrlFetcher>
 <url>http://pear.php.net</url>
</UrlFetcher>

What's your Type?
The last feature of XML_Serializer to be highlighted in this book is its ability to add
type information to the XML tags. This feature is enabled using one option:

$serializer = new XML_Serializer();

// configure the XML declaration
$serializer->setOption(XML_SERIALIZER_OPTION_XML_DECL_ENABLED, true);
$serializer->setOption(XML_SERIALIZER_OPTION_XML_ENCODING,
 'ISO-8859-1');

$serializer->setOption(XML_SERIALIZER_OPTION_TYPEHINTS, true);

// configure the layout
$serializer->setOption(XML_SERIALIZER_OPTION_INDENT, ' ');
$serializer->setOption(XML_SERIALIZER_OPTION_LINEBREAKS, "\n");

$serializer->setOption(XML_SERIALIZER_OPTION_DEFAULT_TAG, $tagNames);

$result = $serializer->serialize($labels);

echo $serializer->getSerializedData();

By setting the TYPEHINTS option to true you tell XML_Serializer to include
information about the type of the data enclosed in a tag as an attribute as well as the
original array key or property name, if it could not be used as a tag name.

Chapter 3

[119]

The resulting document (when the array of Label objects is passed to
serialize()) is:

<?xml version="1.0" encoding="ISO-8859-1"?>
<array _type="array">
 <XML_Serializer_Tag _class="Label" _originalKey="0"
 _type="object">
 <name _type="string">Sun Records</name>
 <artists _type="array">
 <XML_Serializer_Tag _class="Artist" _originalKey="0"
 _type="object">
 <id _type="integer">1</id>
 <name _type="string">Elvis Presley</name>
 <records _type="array">
 <XML_Serializer_Tag _class="Record"
 _originalKey="0"
 _type="object">
 <id _type="string">SUN 209</id>
 <name _type="string">That's ...
 Kentucky</name>
 <released _type="string">July 19, 1954
 </released>
 </XML_Serializer_Tag>
 <XML_Serializer_Tag _class="Record"
 _originalKey="1"
 _type="object">
 <id _type="string">SUN 210</id>
 <name _type="string">Good Rockin'
 Tonight</name>
 <released _type="string">September, 1954
 </released>
 </XML_Serializer_Tag>
 </records>
 </XML_Serializer_Tag>
 <XML_Serializer_Tag _class="Artist" _originalKey="1"
 _type="object">
 <id _type="integer">2</id>
 <name _type="string">Carl Perkins</name>
 <records _type="array">
 <XML_Serializer_Tag _class="Record"
 _originalKey="0"
 _type="object">
 <id _type="string">SUN 224</id>
 <name _type="string">Gone, Gone, Gone</name>
 <released _type="string">July 19, 1954
 </released>

Working with XML

[120]

 </XML_Serializer_Tag>
 </records>
 </XML_Serializer_Tag>
 </artists>
 </XML_Serializer_Tag>
</array>

This feature is helpful when you need to restore the converted XML data to the exact
same data structure it was before. This way, you can use XML_Serializer (and the
matching XML_Unserializer, which will be dealt with later in this chapter) as a drop-
in replacement for serialize() and unserialize().

In this part of the chapter you have used three different packages to create XML
documents. But how should you decide which package you should use to solve the
task at hand?

With the power of all of its options, XML_Serializer is the right tool to use, if
you already have all the data collected in one huge data structure.
If you are creating a structure from data that is computed while you are
creating the document, XML_FastCreate is probably the right choice. It can
also be used to create HTML documents programmatically. This was the
original intent behind the package.
XML_Util should be used if you either need to create a very small XML
document or if you only create a fragment of a document.

Creating Mozilla Applications with XML_XUL
Up to now, you have only created XML in a format that we defined ourselves. But of
course, there are already XML applications that have created some kind of standard
and are acknowledged by the W3C. PEAR has several packages that help you create
XML for these applications, and one of these is the XML_XUL package.

XUL Documents
XUL stands for XML User Interface Language and is part of the Mozilla Project.
The specification of XUL v1.0 can be found on the Mozilla website at http://www.
mozilla.org/projects/xul/xul.html.

XUL is used by Mozilla applications (like Firefox and Thunderbird) to define how
the user interface should be structured. XUL can be combined with JavaScript, CSS,
and RDF to create interactive applications that can access various data sources.
Actually any plug-in for either Firefox or Thunderbird is built with XUL and
JavaScript. XUL makes it a lot easier than HTML to build rich user interfaces,

•

•

•

Chapter 3

[121]

because that is exactly what it has been designed for, whereas HTML has originally
been designed to publish structured content to the Web. So while HTML ships with
tags to structure text in paragraphs, lists, and static HTML tables, XUL provides tags
for sortable data grids, color pickers, or explorer-like tree elements.

Enough talk; let us take a look at an XUL document:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<window title="Simple XUL"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.
is.only.xul">
 <tabbox height="500">
 <tabs>
 <tab label="Labels" />
 <tab label="Misc" />
 </tabs>
 <tabpanels>
 <tabpanel label="Labels">
 <tree flex="1" height="200">
 <treecols>
 <treecol flex="1" id="id" label="Id" primary="true" />
 <treecol flex="1" id="name" label="Name" />
 <treecol flex="1" id="email" label="E-Mail" />
 </treecols>
 <treechildren>
 <treeitem container="true">
 <treerow>
 <treecell label="SUN" />
 <treecell label="Sun Records" />
 <treecell label="info@sun-records.com" />
 </treerow>
 <treechildren>
 <treeitem>
 <treerow>
 <treecell label="elvis" />
 <treecell label="Elvis Presley" />
 <treecell label="elvis@graceland.com" />
 </treerow>
 </treeitem>
 <treeitem>
 <treerow>
 <treecell label="carl" />
 <treecell label="Carl Perkins" />
 <treecell label="carl@sun-records.com" />

Working with XML

[122]

 </treerow>
 </treeitem>
 </treechildren>
 </treeitem>
 <treeitem>
 <treerow>
 <treecell label="SONY" />
 <treecell label="Sony Records" />
 <treecell label="info@sony.com" />
 </treerow>
 </treeitem>
 </treechildren>
 </tree>
 </tabpanel>
 <tabpanel label="Misc">
 <description>Place any content here.</description>
 </tabpanel>
 </tabpanels>
 </tabbox>
</window>

As XUL is XML, the document starts with an XML declaration. This is followed
by another declaration, which is used to include a stylesheet from the URL
chrome://global/skin/. chrome is a special protocol used whenever you need
to access internal data from Mozilla. In this case, it is used to include the stylesheet
that has been selected by the user for his/her Mozilla installation, so that the XUL
application fits perfectly with the look of the browser.

After this declaration comes the root element of the document; this is the <window/>
element in most cases. Inside the <window/> element we nested several other
elements like <tabbox/> and <tree/>. If you open this document in Firefox or
Mozilla, you should see a result resembling the following image:

Chapter 3

[123]

Of course the exact layout depends on the theme you are using in your Mozilla or
Firefox installation. If you start to click around in this window, you will realize that
the tabs and the tree element are already functional and that you can easily hide
columns from the tree element. Imagine implementing this functionality with plain
HTML, CSS, and JavaScript and how many hours you would have to work to make
this possible! This example already shows a big advantage that XUL has compared to
XML—it is great for building intuitive user interfaces for web applications. However,
XUL has also its dark side:

XUL only works in applications of the Mozilla project; users of Microsoft
Internet Explorer or Opera will never be able to use your application.
XUL is (as most XML applications) quite verbose and contains a lot of deeply
nested XML documents.

Creating XUL Documents with XML_XUL
PEAR provides a package to help you solve the second problem: the package
XML_XUL can be used to create an XUL document with an easy-to-use PHP API. The
API of XML_XUL resembles a standard DOM-API—you use the package to build an
object tree in memory, which you can move around and modify until you reach the
desired result. Once you are satisfied with the tree, you can serialize it to XML, which
will then be sent to the browser. The difference to DOM is that there is not only one
class that represents an element, but several different classes for the different types
of widgets provided by XUL. These classes provide helper methods so you can add a
new tab to a tab box with one method call instead of building a complex object tree on
your own. The basic steps to creating a script using XML_XUL are always the same:

•

•

Working with XML

[124]

1. Include the main XML_XUL class
2. Create a new document
3. Create new elements and compose a tree in memory
3. Serialize the XUL document and send it to the browser

Does that sound too hard? Well, it isn't; here is our first script using XML_XUL:

require_once 'XML/XUL.php';

// create a new document
$doc = XML_XUL::createDocument();

// link to the stylesheet selected by the user
$doc->addStylesheet('chrome://global/skin/');

// create a new window
$win = $doc->createElement('window',array(
 'title'=> 'Simple XUL'
)
);
// add it to the document
$doc->addRoot($win);

// create another element
$desc = $doc->createElement('description', array(),
 'This is XUL, believe it or not.');
$win->appendChild($desc);

header('Content-type: application/vnd.mozilla.xul+xml');
$doc->send();

The steps are exactly as described before. The main class is included and a new
document object created using XML_XUL::createDocument(). After that we add
the internal stylesheet to the document instead of providing our own CSS using the
addStylesheet() method. After that, we start creating elements and composing
a tree with them (actually, this is a very small tree, but a tree nevertheless). All
elements that will be added to a document always have to be created using the
createElement() method, which accepts the following parameters:

Name of the element, which is also the name of the tag that will be created
Associative array containing the attributes of the element
The content of the element
Whether to replace XML entities in the content (default is true).

•

•

•

•

Chapter 3

[125]

This method will return an instance of a subclass of XML_XUL_Element. If you want
to know which elements are supported by XML_XUL, you can take a look at the
XML/XUL/Element folder of your PEAR installation.

To build a tree of elements, you may add a child element to any element using
its appendChild() method. After we finish building the tree, we send the correct
header, so Firefox knows how to treat the data, and then send it to the browser using
the send() method. If you open the script in your browser you should see your first
dynamically created XUL document. If you take a look at the source code of the
document you will see the XUL code that was necessary:

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>
<window title="Simple XUL"
 xmlns="http://www.mozilla.org/keymaster/gatekeeper/there.
 is.only.xul">
 <description>This is XUL, believe it or not.</description>
</window>

You will easily recognize the elements <window/> and <description/> you created
using the createElement() method. We mentioned before that XML_XUL will
make it easier to create XUL documents from within PHP than it would be using
DOM, so here is the first improvement:

require_once 'XML/XUL.php';

// create a new document
$doc = XML_XUL::createDocument();

// link to the stylesheet selected by the user
$doc->addStylesheet('chrome://global/skin/');

// create a new window
$win = $doc->createElement('window',array(
 'title'=> 'Simple XUL'
)
);
// add it to the document
$doc->addRoot($win);

$win->addDescription('This is XUL, believe it or not.');

header('Content-type: application/vnd.mozilla.xul+xml');
$doc->send();

The difference in this example is the use of $win->addDescription() to add a
<description/> element to the window, instead of creating and appending the

Working with XML

[126]

element manually. This method is supported by all classes representing elements, as
adding text content is needed quite often.

Next we want to create a tree like the one displayed in the example before. The main
element needed for this is the XML_XUL_Element_Tree class, which is created like
every other element:

$tree = $doc->createElement('Tree',
 array(
 'flex' => 1,
 'height' => 200
)
);

To complete the tree, you would have to create nested <treecols/> and <treecol/>
elements, to specify the columns of the tree. Using XML_XUL, this is a lot easier. The
XML_XUL_Element_Tree class provides a method that does this for you:

$tree->setColumns(3,
 array(
 'id' => 'id',
 'label' => 'Id',
 'flex' => 1,
 'primary' => 'true'
),
 array(
 'id' => 'name',
 'label' => 'Name',
 'flex' => 1
),
 array(
 'id' => 'email',
 'label' => 'E-Mail',
 'flex' => 1
)
);

In the first argument you specify the number of columns you want and in all
following arguments you pass the array of attributes for each column. Now that
we have built the basic structure, we can start adding data to the tree using the
addItem() method of the Tree element:

$sun = $tree->addItem(array('SUN', 'Sun Records',
 'info@sun-records.com'));

Chapter 3

[127]

When calling this method, you need to pass an array containing the values for each
column. You can either pass a string value, which will be used as a label, or pass an
associative array containing all attributes for this column. This method will return an
instance of the XML_XUL_Element_Treeitem class, which can be stored in a variable
for later use. For example, you can directly add child elements to this item, as we are
not building a simple table, but a recursive tree structure:

$sun->addItem(array('elvis', 'Elvis Presley', 'elvis@graceland.com'));
$sun->addItem(array('carl', 'Carl Perkins', 'carl@sun-records.com'));

Of course you can still add new root items to the tree or even nest the tree to a
deeper level by calling the addItem() method on the return values of the previous
addItem() calls. After we have built the tree we finally add it to the window:

$win->appendChild($tree);

If you open the resulting script in your Mozilla-compatible browser, you will see an
interactive tree widget. The main difference to the first example is that the tree has
been built dynamically using PHP and so you could use any resource PHP can access
to fill the tree with data.

Creating a Tab Box
We will now learn how to add tabs to our example. The approach is quite similar;
there is an element XML_XUL_Element_Tabbox, which can be created like any
other element:

$tabbox = &$doc->createElement('Tabbox', array('height' => 500));
$win->appendChild($tabbox);

After creating the tabbox element, it is added to the main window. This newly
created object provides the addTab() method, which is used to create a new tab:

$tab1 = $tabbox->addTab('Labels');

You may add any child elements to the object returned by the addTab() method.
The children of this element will be used as content of the created tab. The addTab()
method accepts several parameters:

Label for the tab
XML_XUL_Element, which will be used for the tab content
Array containing attributes of the tab
Array containing attributes of the tab panel

As we have learned how to build tab boxes and trees using XML_XUL, we can
now implement a script that creates the XUL code shown at the start of this section.

•

•

•

•

Working with XML

[128]

require_once 'XML/XUL.php';

// create a new document
$doc = XML_XUL::createDocument();

// link to the stylesheet selected by the user
$doc->addStylesheet('chrome://global/skin/');

// create a new window
$win = $doc->createElement('window',array(
 'title'=> 'Simple XUL'
)
);
// add it to the document
$doc->addRoot($win);

// Create a tabbox and add it to the window
$tabbox = &$doc->createElement('Tabbox', array('height' => 500));
$win->appendChild($tabbox);

// Create a new tree
$tree = &$doc->createElement('Tree',
 array(
 'flex' => 1,
 'height' => 200
)
);

// Set the column labels
$tree->setColumns(3,
 array(
 'id' => 'id',
 'label' => 'Id',
 'flex' => 1,
 'primary' => 'true'
),
 array(
 'id' => 'name',
 'label' => 'Name',
 'flex' => 1
),
 array(
 'id' => 'email',
 'label' => 'E-Mail',
 'flex' => 1
)

Chapter 3

[129]

);

// add a new entry to the tree
$sun = $tree->addItem(array('SUN', 'Sun Records', 'info@sun-records.
 com'));

// Add two new subentries to the created entry
$sun->addItem(array('elvis', 'Elvis Presley', 'elvis@graceland.com'));
$sun->addItem(array('carl', 'Carl Perkins', 'carl@sun-records.com'));

// add another entry to the tree
$tree->addItem(array('SONY', 'Sony Records', 'info@sony.com'));

// Add a new tab to the label and use the tree as content
$tabbox->addTab('Labels', $tree, array(), array('height' => 200));

// Add another tab without content
$tab2 = $tabbox->addTab('Misc');

// Add simple text content to the second tab
$tab2->addDescription('Place any content here.');

header('Content-type: application/vnd.mozilla.xul+xml');
$doc->send();

In most cases creating XUL with PHP and XML_XUL is easier than writing the XUL
code by hand—all XUL example code in this book has been created using PHP.
XML_XUL allows you to read existing XUL documents, modify them, and write
them back to a file or the web browser. Furthermore XML_XUL provides debug
output to help you analyze the tree you built in memory. Last, XML_XUL provides
classes for over 70 XUL elements.

Processing XML Documents
In the first part of this chapter, you learned how to create XML documents from any
data source using various PEAR packages. But creating XML would make no sense
unless someone on the other side processes the XML you have created. So in the
second part of this chapter you will learn which PEAR packages to use for processing
XML documents.

The need to process might arise in several situations, as the use of XML in software
development is getting more popular every day. Common usage scenarios where
you might need to read XML documents and extract information could be:

Working with XML

[130]

Read configuration files in XML format
Import data to your application that has been exported by any other
application in an XML format
Display content on your website that has been syndicated by any application
or website
Accept web service requests
Parse web service responses

While the last two scenarios will be the topic of the next chapter, there still are a lot of
usages of XML documents beyond the huge field of web services. PEAR has a lot to
offer to help you accomplish these tasks. Before we take a look at the PEAR packages
responsible for XML parsing, let us talk about the XML support in PHP in general.

In PHP4 there has been only one stable way to work the XML, the expat-based xml
extension. This extension allowed you to parse XML documents using a SAX API.
SAX, which is short for Simple API to XML, is event based. When using a SAX API,
you define several functions or methods to handle the different events that occur
while analyzing the document. These events include opening tags and closing
tags, as well as character data, processing instructions, or XML comments. After
registering the callbacks you pass the document to the parser, which will analyze it
character by character and steadily move its internal cursor through the document.
You will later learn more about SAX-based parsing, when we deal with the
XML_Parser package.

PHP5 provides four extensions that help you process XML data:

ext/xml, which is compatible to the PHP4 version
ext/dom, an extension that follows the W3C DOM standard
ext/simplexml, a new approach, which is unique to PHP
ext/xmlreader, an XML-pull parser, which is some kind of mixture between
SAX and DOM

Looking at these APIs you might think that using PEAR for XML processing does
not earn you anything. But do not let these APIs blind you, all of them are low-level
APIs, while PEAR has to offer some packages that work on a higher level and thus
make it easier for you to work with XML documents.

On the following pages we will be using three different packages, XML_Parser,
XML_Unserializer, and XML_RSS. All of these packages are built on top of the SAX
API and all of them work fine with PHP4 or PHP5. While XML_Parser can be used to
read any XML document and XML_Unserializer allows you to process nearly every
XML document, XML_RSS is built specifically to parse RSS feeds.

•

•

•

•

•

•

•

•

•

Chapter 3

[131]

Parsing XML with XML_Parser
XML_Parser is an object-oriented wrapper built around the XML parsing functions
available in PHP. The documentation on these functions can be found on the PHP
website at http://www.php.net/xml; these functions can be used to process any
XML document using a SAX API. When using a SAX API, the parser moves an
internal cursor forwards through the document and at the same time tokenizes the
document. These tokens can be:

Opening or closing tags (empty tags are the same as an opening and closing
tag without any data in between them)
Character data
Processing instructions like <?php ...?> or <?xml ...?>
External entities that reference other XML documents
Notation declarations
Unparsed entity declarations
Other parts of XML documents like the document type declaration or
XML comments

While the parser moves its cursor through the document it will trigger an event for
each token it finds. Your application should be able to handle these events using any
PHP callback (function, method, or static method) and extract the information you
need from the document. You need to register these callbacks for all tokens you want
to handle prior to parsing the document. So your typical PHP code using the xml
functions will look a lot like this:

// acquire a new parser resource
$xml_parser = xml_parser_create();

// register callbacks for opening and closing tags.
// The implementations of startElement() and endElement() have been
// left out
xml_set_element_handler($xml_parser, "startElement", "endElement");

// open the file you want to parser
if (!($fp = fopen($file, "r"))) {
 die("could not open XML input");
}

// read the file and pass the read data to the parser for tokenizing
// If an error occurs (e.g. document is not well-formed, exit the
// script)
while ($data = fread($fp, 4096)) {

•

•

•

•

•

•

•

Working with XML

[132]

 if (!xml_parse($xml_parser, $data, feof($fp))) {
 die(sprintf("XML error: %s at line %d",
 xml_error_string(xml_get_error_code($xml_parser)),
 xml_get_current_line_number($xml_parser)));
 }
}

// free the parser resource
xml_parser_free($xml_parser);

When using these functions you will be using the same code in different places of
your application as you will always have to acquire a parser resource, register the
callback, open files or other streams, pass the data from the file to the parser, handle
any errors that occur while parsing, and free the parser you have set up.

Enter XML_Parser
XML_Parser has been developed to allow you to reuse as much code as possible
when using the SAX API of PHP. Furthermore it provides some convenience
functions and enables you to use the SAX functions in an object-oriented way, which
should be the preferred approach of large scale applications.

To learn how to work with XML_Parser, we will be using the following example
document:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>
 <section name="paths">
 <includes>/usr/share/php/myapp</includes>
 <cache>/tmp/myapp</cache>
 <templates>/var/www/skins/myapp</templates>
 </section>
 <section name="db" environment="online">
 <dsn>mysql://user:pass@localhost/myapp</dsn>
 <prefix>myapp_</prefix>
 </section>
 <section name="db" environment="stage">
 <dsn>mysql://root:@localhost/myapp</dsn>
 <prefix>myapp_testing_</prefix>
 </section>
</configuration>

This document could have been copied from any application that uses XML-based
configuration files. The configuration is split into different sections to configure
different parts of the application; in this case there are sections to configure the

Chapter 3

[133]

folders that will be used to include PHP and templates files, and for temporary
files, as well as to configure the database access. The section for database access
is available twice in the configuration file and an environment attribute has been
added to these sections. This could be used to store different configurations for the
testing, staging, and online environments of the configurations in the same file. On
the following pages, we will be using XML_Parser to implement a configuration
reader that is able to parse the above file and return the values stored in the
configuration while respecting the environment in which it is used.

Using XML_Parser is quite different from using any other PEAR packages you
have used before. Instead of instantiating a new instance of XML_Parser you create
a new class that extends XML_Parser, and instantiate a new object of this class
instead. In this new class, you will only need to implement the different handlers
for all tokens you want to process. All other work needed to parse the document
(acquiring a parser, opening files, handling errors, etc.) is done automatically by
the base class. In order for XML_Parser to be able to invoke the callbacks for the
different tokens in your XML document, you have to comply with its naming scheme
when implementing the callbacks in your derived class. The following table lists all
possible callbacks and their names. The signatures of the methods are exactly the
same as described in the PHP manual.

Token Callback name
opening tag startElement

closing tag endElement

character data cdataHandler

external entities entityrefHandler

processing instructions piHandler

unparsed entity
declarations

unparsedHandler

notation declarations notationHandler

any other token defaultHandler

Implementing the Callbacks
As we now know the names of the callbacks, implementing a first class that parses
the document is extremely easy; just take a look at the following code:

// include the base class
require_once 'XML/Parser.php';

// create a class that extends XML_Parser
class ConfigReader extends XML_Parser
{

Working with XML

[134]

 /**
 * handle opening tags
 *
 * @param resource parser resource
 * @param string tag name
 * @param array attributes
 */
 public function startHandler($parser, $name, $attribs)
 {
 echo "Start element $name found\n";
 }

 /**
 * handle character data
 *
 * @param resource parser resource
 * @param string character data
 */
 public function cdataHandler($parser, $cData)
 {
 $cData = trim($cData);
 if ($cData === '') {
 return;
 }
 echo "...data '$cData' found\n";
 }

 /**
 * handle closing tags
 *
 * @param resource parser resource
 * @param string tag name
 */
 public function endHandler($parser, $name)
 {
 echo "End element $name found\n";
 }
}

// Create a new instance of the class
$config = new ConfigReader();

// set the name of the file to parse
$config->setInputFile('config.xml');

Chapter 3

[135]

// parse the file and catch errors
$result = $config->parse();
if (PEAR::isError($result)) {
 echo 'Parsing failed: ' . $result->getMessage();
}
$config->free();

For our example, we only need to handle three types of different tokens: opening
tags, closing tags, and the character data enclosed within them. So we only need to
implement the methods startElement(), endElement(), and cDataHandler() in
our class, after including and extending XML_Parser. For the first example, some
debugging output in these methods is enough to get acquainted with the XML_
Parser package. Right after implementing the new ConfigReader class, we create
a new instance of it. As the class extends the XML_Parser class, it already provides
useful methods for XML parsing; one of these is the setInputFile() method, which
enables you to pass the name of a file (or any other stream) that needs to be parsed.
To start the actual parsing, you will need to call the parse() method. This method
will either return true, if the document could be parsed, or an instance of PEAR_
Error if any errors occur during the parsing process. If you pass the filename of our
example XML document, you will see the following output on your screen:

Start element CONFIGURATION found
Start element SECTION found
Start element INCLUDES found
...data '/usr/share/php/myapp' found
End element INCLUDES found
Start element CACHE found
...data '/tmp/myapp' found
End element CACHE found
Start element TEMPLATES found
...data '/var/www/skins/myapp' found
End element TEMPLATES found
End element SECTION found
Start element SECTION found
Start element DSN found
...data 'mysql://user:pass@localhost/myapp' found
End element DSN found
Start element PREFIX found
...data 'myapp_' found
End element PREFIX found
End element SECTION found
Start element SECTION found
Start element DSN found
...data 'mysql://root:@localhost/myapp' found
End element DSN found

Working with XML

[136]

Start element PREFIX found
...data 'myapp_testing_' found
End element PREFIX found
End element SECTION found
End element CONFIGURATION found

A quick glance reveals that this is not exactly the result we expected. While the
callbacks for opening and closing tags as well as the data are called in the same
order as they occur in the source document, all tag names have been converted to
uppercase. This is the default behavior of XML_Parser and can be easily switched off
by adding another property to the implemented ConfigReader class:

// create a class that extends XML_Parser
class ConfigReader extends XML_Parser
{
 /**
 * disable case folding to uppercase
 */
 public $folding = false;

 /* ... rest of the code remains unchanged ...*/
}

After setting this property to false, XML_Parser will not change the case of the tag
names prior to passing them to the callbacks.

Adding Logic to the Callbacks
As we now know how XML_Parser works, we can finally use it to implement the
planned configuration reader. As we will need to store state information while
parsing, we start by adding some properties to the new class.

/**
 * Class to read XML configuration files
 */
class ConfigReader extends XML_Parser
{
 /**
 * disable case folding to uppercase
 */
 public $folding = false;

 /**
 * sections that already have been parsed
 */
 private $sections = array();

Chapter 3

[137]

 /**
 * selected environment
 */
 private $environment;

 /**
 * temporarily store data during parsing
 */
 private $currentSection = null;
 private $currentData = null;
}

The $sections property will later store the configuration options, the $environment
property will store the environment in which we will be using the configuration
reader, and the last two properties will be used to temporarily store the current
section while the cursor and current character data is inside a <section/> tag.

Next, we implement a constructor to pass the selected environment on instantiation
of the parser object:

/**
 * Create a new ConfigReader
 *
 * @param string environment to use
 */
 public function __construct($environment = 'online')
 {
 parent::__construct();
 $this->environment = $environment;
 }

The constructor takes a string parameter whose value will be stored in the
$environment property. Now that we have set up all properties and the constructor
we will implement the actual logic in the callbacks. First is the callback for
opening tags:

/**
 * handle opening tags
 *
 * @param resource parser resource
 * @param string tag name
 * @param array attributes
 */
 public function startHandler($parser, $name, $attribs)
 {
 switch ($name) {
 case 'configuration':

Working with XML

[138]

 break;
 case 'section':
 // check, whether the correct environment is set
 if (!isset($attribs['environment'])
 || $attribs['environment'] == $this->environment) {

 // store the name of the section
 $this->currentSection = $attribs['name'];
 // create an empty array for this section
 $this->sections[$this->currentSection] = array();
 }
 break;
 default:
 $this->currentData = '';
 break;
 }
 }

The technique used here is quite common when implementing SAX-based XML
parsers. A switch statement is used to execute different actions depending on the
tag name. If the opening <configuration> tag is found, the parser will ignore it.
If an opening <section> tag is found, we check whether an environment attribute
has been specified and if the value of this attribute is identical to the environment
specified in the constructor. If yes, the name of this section is stored in an object
property and a new array for this section is created in the $sections property. If the
environments do not match, we assign null value to the $currentSection property
and ignore all tags inside this section.

If any other tag is found, we set the current character data to an empty string. After
the start element handler has been implemented, we continue with the character
data handler.

/**
 * handle character data
 *
 * @param resource parser resource
 * @param string character data
 */
 public function cDataHandler($parser, $cData)
 {
 if (trim($cData) === '') {
 return;
 }
 $this->currentData .= $cData;
 }

Chapter 3

[139]

This handler is quite simple: If the data consists only of whitespace, it is ignored,
otherwise we append it to the $currentData property. The last handler left to
implement is the method handling closing tags:

/**
 * handle closing tags
 *
 * @param resource parser resource
 * @param string tag name
 */
 public function endHandler($parser, $name)
 {
 switch ($name) {
 case 'configuration':
 break;
 // end of </section>, clear the current section
 case 'section':
 $this->currentSection = null;
 break;
 default:
 if ($this->currentSection == null) {
 return;
 }
 // store the current data in the configuration
 $this->sections[$this->currentSection][$name] = trim(
 $this->currentData);
 break;
 }
 }

Again, the closing </configuration> tag is ignored as it is only used as a
container for the document. If we find a closing </section> tag, we just reset the
$currentSection property, as we are not inside a section anymore. Any other tag
will be treated as a configuration directive and the text that has been found inside
this tag (and which we stored in the $currentData property) will be used as the
value for this directive. So we store this value in the $sections array using the
name of the current section and the name of the closing tag, except when the current
section is null.

Accessing the Configuration Options
Last we need to add a method to access the data collected while parsing the XML
document:

Working with XML

[140]

/**
 * Fetch a configuration option
 *
 * @param string name of the section
 * @param string name of the option
 * @return mixed configuration option or false if not set
 */
 public function getConfigurationOption($section, $value)
 {
 if (!isset($this->sections[$section])) {
 return false;
 }
 if (!isset($this->sections[$section][$value])) {
 return false;
 }
 return $this->sections[$section][$value];
 }
}

This method accepts the name of a section as well as the name of a configuration
option. It will check whether the section and the option have been defined in the
XML document and return its value. Otherwise it will return null. Finally our
configuration reader is ready to use:

$config = new ConfigReader('online');
$result = $config->setInputFile('config.xml');
$result = $config->parse();

printf("Cache folder : %s\n",
 $config->getConfigurationOption('paths', 'cache'));
printf("DB connection : %s\n",$config->getConfigurationOption('db',
 'dsn'));

Running this script will output the configuration values stored in the XML file for the
online environment:

Cache folder : /tmp/myapp
DB connection : mysql://user:pass@localhost/myapp

Our first XML parser that actually does something useful has now been implemented
and using XML_Parser helped a lot. However, XML_Parser has much more to offer!

Avoiding Inheritance
In the previous example we had to extend XML_Parser. In a simple example this
does not pose a problem, but if you are developing a large framework or application

Chapter 3

[141]

you might want all your classes to extend a base class to provide some common
functionality. As you cannot change XML_Parser to extend your base class, you
might think that this is a severe limitation of XML_Parser. Luckily, extending
XML_Parser is not required for using XML_Parser since version 1.2.0. The following
code shows the ConfigReader class without the dependency on XML_Parser.
Besides the extends statement, we also removed the $folding property and the
call to parent::__construct() in the constructor.

/**
 * Class to read XML configuration files
 */
class ConfigReader
{
 /**
 * selected environment
 */
 private $environment;

 /**
 * sections that already have been parsed
 */
 private $sections = array();

 /**
 * temporarily store data during parsing
 */
 private $currentSection = null;
 private $currentData = null;

 /**
 * Create a new ConfigReader
 *
 * @param string environment to use
 */
 public function __construct($environment = 'online')
 {
 $this->environment = $environment;
 }

 // The handler functions should go in here
 // They have been left out to save some paper
}

As our class does not extend XML_Parser anymore, it does not inherit any of the
parsing functionality we need. Still, it can be used with XML_Parser. The following

Working with XML

[142]

code shows how the same XML document can now be parsed with the
ConfigReader class without the need to extend the XML_Parser class:

$config = new ConfigReader('online');
$parser = new XML_Parser();
$parser->setHandlerObj($config);
$parser->folding = false;
$parser->setInputFile('XML_Parser-001.xml');
$parser->parse();

printf("Cache folder : %s\n",
 $config->getConfigurationOption('paths', 'cache'));
printf("DB connection : %s\n", $config->getConfigurationOption('db',
 'dsn'));

Instead of creating one object, we are creating two objects: the ConfigReader and
an instance of the XML_Parser class. As the XML_Parser class does not provide the
callbacks for handling the XML data, we pass the ConfigReader instance to the
parser and it uses this object to call the handlers. This is the only new method we will
be using in this example. We only need to set the $folding property so XML_Parser
will not convert the tags to uppercase and then pass in the filename and start the
parsing process. The output of the script will be exactly the same as in the previous
example, but we did it without extending XML_Parser.

Additional XML_Parser Features
Although you have learned about the most important features of XML_Parser, it can
still do more for you. Here you will find a short summary of the features that have
not been explained in detail:

XML_Parser is able to convert the data from one encoding to the other. This
means you could read a document encoded in UTF-8 and automatically
convert the character data to ISO-8859-1 while parsing the document.
XML_Parser can help you to get rid of the switch statements. By passing
func as the second argument to the constructor, you switch the parsing
mode to the so-called function mode. In this mode, XML_Parser will
not call startElement() and endElement(), but search for methods
xmltag_$tagname() and _xmltag_$tagname() for opening tags, where
$tagname is the name of the tag it currently handles.
XML_Parser even provides an XML_Parser_Simple class that already
implements the startElement() and cDataHandler() methods for you. In
these methods, it will just store the data and pass the collected information
to the endElement() method. In this way you will be able to handle all data
associated with one tag at once.

•

•

•

Chapter 3

[143]

Processing XML with XML_Unserializer
While XML_Parser helps you process XML documents, there is still a lot work
left for the developer. In most cases you only want to extract the raw information
contained in the XML document and convert it to a PHP data structure (like an array
or a collection of objects). This is where XML_Unserializer comes into play. XML_
Unserializer is the counterpart to XML_Serializer, and while XML_Serializer creates
XML from any PHP data structure, XML_Unserializer creates PHP data structures
from any XML. If you have XML_Serializer installed, you will not need to install
another package, as XML_Unserializer is part of the same package.

The usage of XML_Unserializer resembles that of XML_Serializer, as you use exactly
the same steps (of course with one difference):

Include XML_Unserializer and create a new instance
Configure the instance using options
Read the XML document
Fetch the data and do whatever you want with it

Now let us take a look at a very simple example:

// include the class
require_once 'XML/Unserializer.php';

// create a new object
$unserializer = new XML_Unserializer();

// construct some XML
$xml = <<<XML
<artists>
 <artist>Elvis Presley</artist>
 <artist>Carl Perkins</artist>
</artists>
XML;

$unserializer->unserialize($xml);
$artists = $unserializer->getUnserializedData();

print_r($artists);

If you run this script, it will output:

Array
(
 [artist] => Array
 (

•

•

•

•

Working with XML

[144]

 [0] => Elvis Presley
 [1] => Carl Perkins
)
)

As you can easily see, XML_Unserializer converted the XML document into a set of
nested arrays. The root array contains only one value, which is stored under the key
artist. This key has been used because the XML document contains two <artist/>
tags in the first nesting level. The artist value is again an array, but this time it
is not an associative array, but a numbered one. It contains the names of the two
artists that have been stored in the XML document. So nearly all the data stored in
the document is available in the resulting array. The only information missing is the
root tag of the document, <artists/>. We used this information as the name of the
PHP variable that stores the array, but we could only do this as we knew what kind
of information was stored in the XML document. However, if we did not know this,
XML_Unserializer still gives access to this information:

echo $unserializer->getRootName();

As expected, this will display the name of the root tag of the previously processed
XML document:

artists

So instead of having to implement a new class, you can use XML_Unserializer to
extract all the information from the XML document while preserving the actual
structure of the information. And all that was needed was four lines of code!

So let us try XML_Unserializer with the XML configuration file that we parsed
using XML_Parser and see what we get in return. As the XML document is stored
in a separate file, you might want to use file_get_contents() to read the XML
into a variable. This is not needed, as XML_Unserializer can process any inputs
supported by XML_Parser. To tell XML_Unserializer to treat the data we passed to
unserialize() as a filename instead of the actual XML document, you only need to
pass an additional parameter:

require_once 'XML/Unserializer.php';
$unserializer = new XML_Unserializer();

$unserializer->unserialize('config.xml', true);
$config = $unserializer->getUnserializedData();
print_r($config);

Running this script will output the following array:

Array
(

Chapter 3

[145]

 [section] => Array
 (
 [0] => Array
 (
 [includes] => /usr/share/php/myapp
 [cache] => /tmp/myapp
 [templates] => /var/www/skins/myapp
)
 [1] => Array
 (
 [dsn] => mysql://user:pass@localhost/myapp
 [prefix] => myapp_
)
 [2] => Array
 (
 [dsn] => mysql://root:@localhost/myapp
 [prefix] => myapp_testing_
)
)
)

If you take a look at the XML document from the XML_Parser examples, you will
recognize that XML_Unserializer extracted all information that has been stored
between the XML tags. We had several sections defined in the configuration file and
all the configuration directives that have been included in the XML document are
available in the resulting array. However, the names and the environments of the
sections are missing. This information was stored in attributes of the <section/>
tags, which have been ignored by XML_Unserializer.

Parsing Attributes
Of course, this behavior can be changed. Like XML_Serializer, XML_Unserializer
provides the means to influence parsing behavior by accepting different values for
several options. Options can be set in exactly the same way as with XML_Serializer:

Passing an array of options to the constructor or the setOptions() method
Passing an array of options to the unserialize() call
Setting a single option via the setOption() method

If we want to parse the attributes as well, a very small change is necessary:

require_once 'XML/Unserializer.php';
$unserializer = new XML_Unserializer();

•

•

•

Working with XML

[146]

// parse attributes as well
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_PARSE,
 true);

$unserializer->unserialize('XML_Parser-001.xml', true);
$config = $unserializer->getUnserializedData();
print_r($config);

We only added one line of code to the script to set the ATTRIBUTES_PARSE option of
XML_Unserializer to true and here is how it influences the output of the script:

Array
(
 [section] => Array
 (
 [0] => Array
 (
 [name] => paths
 [includes] => /usr/share/php/myapp
 [cache] => /tmp/myapp
 [templates] => /var/www/skins/myapp
)
 [1] => Array
 (
 [name] => db
 [environment] => online
 [dsn] => mysql://user:pass@localhost/myapp
 [prefix] => myapp_
)
 [2] => Array
 (
 [name] => db
 [environment] => stage
 [dsn] => mysql://root:@localhost/myapp
 [prefix] => myapp_testing_
)
)
)

Now the resulting array contains the configuration directives as well as
meta-information for each section, which was stored in attributes. However,
configuration directives and meta-information got mixed up, which will cause
problems when you are using <name/> or <environment/> directives, as they will
overwrite the values stored in the attributes. Again, only a small modification to the
script is necessary to solve this problem:

Chapter 3

[147]

require_once 'XML/Unserializer.php';
$unserializer = new XML_Unserializer();

// parse attributes as well
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_PARSE,
 true);
// store attributes in a separate array
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_ARRAYKEY,
 '_meta');

$unserializer->unserialize('config.xml', true);
$config = $unserializer->getUnserializedData();
print_r($config);

By setting the ATTRIBUTES_ARRAYKEY option, we tell XML_Unserializer to store the
attributes in a separate array instead of mixing them with the tags. And here is
the result:

Array
(
 [section] => Array
 (
 [0] => Array
 (
 [_meta] => Array
 (
 [name] => paths
)
 [includes] => /usr/share/php/myapp
 [cache] => /tmp/myapp
 [templates] => /var/www/skins/myapp
)
 [1] => Array
 (
 [_meta] => Array
 (
 [name] => db
 [environment] => online
)
 [dsn] => mysql://user:pass@localhost/myapp
 [prefix] => myapp_
)
 [2] => Array
 (
 [_meta] => Array
 (
 [name] => db

Working with XML

[148]

 [environment] => stage
)
 [dsn] => mysql://root:@localhost/myapp
 [prefix] => myapp_testing_
)
)
)

Now you can easily extract all configuration options without having to implement
your own parser for every XML format. But if you are obsessed with object-oriented
development, you might complain that the OO interface the XML_Parser approach
provided for the configuration options was a lot more convenient than working with
simple PHP arrays. If this is what you were thinking, then please read on.

Mapping XML to Objects
By default, XML_Unserializer will convert complex XML structures (i.e. every tag
that contains nested tags or attributes) to an associative array. This behavior can be
changed by setting the following option:

$unserializer->setOption(XML_UNSERIALIZER_OPTION_COMPLEXTYPE,
'object');

If you add this line of code to the script, the output will be changed:

stdClass Object
(
 [section] => Array
 (
 [0] => stdClass Object
 (
 [_meta] => Array
 (
 [name] => paths
)
 [includes] => /usr/share/php/myapp
 [cache] => /tmp/myapp
 [templates] => /var/www/skins/myapp
)
 ...the other sections have been left out...
)

Instead of associative arrays, XML_Unserializer will create an instance of the
stdClass class, which is always defined in PHP and does not provide any methods.
While this will now provide object-oriented access to the configuration directives, it
is not better than using arrays, as you still have to write code like this:

Chapter 3

[149]

echo $config->section[0]->templates;

Well at least this looks a lot like simpleXML, which a lot of people think is a cool way
of dealing with XML. But it is not cool enough for us, and XML_Unserializer is able
to do a lot more, as the following example will show you.

XML_Unserializer is able to use different classes for different tags. For each tag,
it will check whether a class of the same name has been defined and create an
instance of this class instead of just stdClass. When setting the properties of the
classes, it will check whether a setter method for each property has been defined.
Setter methods always start with set followed by the name of the property. So
you can implement classes that provide functionality and let XML_Unserializer
automatically create them for you and set all properties according to the data in the
XML document. In our configuration example, we would need two classes: one for
the configuration and one for each section in the configuration. Here is an example
implementation of these classes:

/**
 * Class to provide access to the configuration
 */
class configuration
{
 /**
 * Will store the section
 */
 private $sections = null;

 /**
 * selected environment
 */
 private $environment = 'online';

 /**
 * Setter method for the section tag
 */
 public function setSection($section)
 {
 $this->sections = $section;
 }

 /**
 * Set the environment for the configuration
 *
 * Will not be called by XML_Unserialiazer, but
 * the user.

Working with XML

[150]

 */
 public function setEnvironment($environment)
 {
 $this->environment = $environment;
 }

 /**
 * Fetch a configuration option
 *
 * @param string name of the section
 * @param string name of the option
 * @return mixed configuration option or false if not set
 */
 public function getConfigurationOption($section, $value)
 {
 foreach ($this->sections as $currentSection) {
 if ($currentSection->getName() !== $section) {
 continue;
 }
 if (!$currentSection->isEnvironment($this->environment)) {
 continue;
 }
 return $currentSection->getValue($value);
 }
 return null;
 }
}

The implementation of the configuration class is quite simple: we have got a
property to store all sections of the configuration as well as a property that stores
the selected environment, the matching setter methods, and one method to retrieve
configuration values. The only thing that might strike you in the implementation of
the configuration class is that the method to set the sections is called setSection()
instead of setSections(). This is because the tag is also called <section/>. Next is
the implementation of the section class:

/**
 * Class to store information about one section
 */
class section
{
 /**
 * stores meta information
 */
 private $meta = null;

Chapter 3

[151]

 /**
 * setter for the meta information
 */
 public function setMeta($meta)
 {
 if (!isset($meta['name'])) {
 throw new Exception('Sections require a name.');
 }
 $this->meta = $meta;
 }

 /**
 * Get the name of the section
 */
 public function getName()
 {
 return $this->meta['name'];
 }

 /**
 * check for the specified environment
 */
 public function isEnvironment($environment)
 {
 if (!isset($this->meta['environment'])) {
 return true;
 }
 return ($environment === $this->meta['environment']);
 }

 /**
 * Get a value from the section
 */
 public function getValue($name)
 {
 if (isset($this->$name)) {
 return $this->$name;
 }
 return null;
 }
}

Again, this is mainly a container for information stored in the session with some
setters and getters. Now, that both classes have been implemented, you can easily
make XML_Unserializer use them:

Working with XML

[152]

require_once 'XML/Unserializer.php';
$unserializer = new XML_Unserializer();

// parse attributes as well
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_PARSE,
 true);
// store attributes in a separate array
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_ARRAYKEY,
 'meta');
// use objects instead of arrays
$unserializer->setOption(XML_UNSERIALIZER_OPTION_COMPLEXTYPE,
 'object');
$unserializer->setOption(XML_UNSERIALIZER_OPTION_TAG_AS_CLASSNAME,
 true);

$unserializer->unserialize('config.xml', true);
$config = $unserializer->getUnserializedData();

printf("Cache folder : %s\n", $config->getConfigurationOption(
 'paths',
 'cache'));
printf("DB connection : %s\n", $config->getConfigurationOption('db',
 'dsn'));

$config->setEnvironment('stage');
print "\nChanged the environment:\n";
printf("Cache folder : %s\n", $config->getConfigurationOption(
 'paths',
 'cache'));
printf("DB connection : %s\n", $config->getConfigurationOption('db',
 'dsn'));

Again, setting one option is enough to completely change the parsing behavior of
XML_Unserializer. When you run the script, you will see the following output:

Cache folder : /tmp/myapp
DB connection : mysql://user:pass@localhost/myapp

Changed the environment:
Cache folder : /tmp/myapp
DB connection : mysql://root:@localhost/myapp

There is only one thing that might break your new configuration reader. If a
configuration contains only one section, the configuration::setSection()
method will be invoked by passing an instance of section instead of a numbered
array of several section objects. This will lead to an error when iterating over this

Chapter 3

[153]

non-existent array. You could either automatically create an array in this case while
implementing setSection() or let XML_Unserializer do the work:

$unserializer->setOption(XML_UNSERIALIZER_OPTION_FORCE_ENUM,
 array('section'));

Now XML_Unserializer will create a numbered array even if there is only one
occurrence of the <section/> tag. As you now know how to set options for XML_
Unserializer, you may want to take a look at the following table, which is a complete
list of all options XML_Unserializer provides.

Option name Description Default value
COMPLEXTYPE Defines how tags that do not only contain

character data should be unserialized.
May either be array or object.

array

ATTRIBUTE_KEY Defines the name of the attribute from
which the original key or property name
is taken.

_originalKey

ATTRIBUTE_TYPE Defines the name of the attribute from
which the type of the value is taken.

_type

ATTRIBUTE_CLASS Defines the name of the attribute from
which the class name is taken when
creating an object from the tag.

_class

TAG_AS_CLASSNAME Whether the tag name should be used as
class name.

false

DEFAULT_CLASS Name of the default class to use when
creating objects.

stdClass

ATTRIBUTES_PARSE Whether to parse attributes (true) or
ignore them (false).

false

ATTRIBUTES_PREPEND String to prepend attribute names with. empty
ATTRIBUTES_ARRAYKEY Key or property name under which all

attributes will be stored in a separate
array. Use false to disable this.

false

CONTENT_KEY Key or property name for the character
data contained in a tag that does not
only contain character data.

_content

TAG_MAP Associative array of tag names that
should be converted to different names.

empty array

FORCE_ENUM Array of tag names that will be
automatically treated as if there was
more than one occurrence of the tag. So
there will always be numeric arrays that
contain the actual data.

empty array

Working with XML

[154]

Option name Description Default value
ENCODING_SOURCE The source encoding of the document;

will be passed to XML_Parser.
null

ENCODING_TARGET The desired target encoding; will be
passed to XML_Parser.

null

DECODE_FUNC PHP callback that will be applied to all
character data and attribute values.

null

RETURN_RESULT Whether unserialize() should
return the result or only true, if the
unserialization was successful.

false

WHITESPACE Defines how whitespace in the
document will be treated. Possible
values are: XML_..._WHITESPACE_
KEEP, XML_..._WHITESPACE_TRIM
and XML_..._WHITESPACE_
NORMALIZE.

XML_..._
WHITESPACE_
TRIM

IGNORE_KEYS List of tags whose contents will
automatically be passed to the parent tag
instead of creating a new tag.

empty array

GUESS_TYPES Whether to enable automatic type
guessing for character data and
attributes.

false

Unserializing the Record Labels
In the XML_Serializer examples we created an XML document based on a PHP data
structure composed of objects. In this last XML_Unserializer example we will close
the circle by creating the same data structure from the XML document. Here is the
code that we will use to achieve this:

require_once 'XML/Unserializer.php';
$unserializer = new XML_Unserializer();

// Do not ignore attributes
$unserializer->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_PARSE,
 true);

// Some complex tags should be objects, but enumerations should be
// arrays
$types = array(
 '#default' => 'object',
 'artists' => 'array',
 'labels' => 'array',
 'records' => 'array'

Chapter 3

[155]

);
$unserializer->setOption(XML_UNSERIALIZER_OPTION_COMPLEXTYPE, $types);

// Always create numbered arrays of labels, artists and records
$unserializer->setOption(XML_UNSERIALIZER_OPTION_FORCE_ENUM,
array('label', 'artist', 'record'));

// do not add nested keys for label, artist and record
$unserializer->setOption(XML_UNSERIALIZER_OPTION_IGNORE_KEYS,
array('label', 'artist', 'record'));

// parse the file
$unserializer->unserialize('first-xml-document.xml', true);
print_r($unserializer->getUnserializedData());

When running this script you will see several warnings like this one on your screen:

Warning: Missing argument 1 for Record::__construct() in c:\wamp\www\
books\packt\pear\xml\example-classes.php on line 48

This is because we implemented constructors in the Label, Artist, and Record
classes that require some parameters to be passed when creating new instances.
XML_Unserializer will not pass these parameters to the constructor, so we need to
make some small adjustments to our class definitions:

class Label {
 ...
 public function __construct($name = null) {
 $this->name = $name;
 }
 ...
}

class Artist {
 ...
 public function __construct($name = null) {
 $this->name = $name;
 }
 ...
}

class Record {
 ...
 public function __construct($id = null, $name = null, $released =
 null) {
 $this->id = $id;
 $this->name = $name;

Working with XML

[156]

 $this->released = $released;
 }
}

By making the arguments in the constructor optional, we can easily get rid of the
warnings. XML_Unserializer will nevertheless set all properties of the objects
after instantiating them. So if you run the script now, you will get the result we
expected—the complete object tree has been restored and there was no need to write
a custom XML parser for this task.

Additional Features
Even though we have used XML_Unserializer to create some really cool scripts with
a few lines of code, we have not used all of the features XML_Unserializer provides.
XML_Unserializer also allows you to:

Map tag names to any class name by specifying an associative array
Use type guessing, so it will automatically convert the data to Booleans,
integers, or floats
Use XML_Serializer/XML_Unserializer as a drop-in replacement for
serialize()/unserialize()
Apply any PHP callback to all character data and attribute values
Remove or keep all whitespace in the document

XML_Parser vs. XML_Unserializer
Whenever you need to extract information from an XML document, you should
check whether XML_Unserializer can accomplish the task at hand before
implementing your custom parser. In more than 90% of all cases XML_Unserializer
will be the right tool for you. If your first attempt does not succeed, a little tweaking
of the options is usually enough to get the job done.

XML_Parser should be used in any of the following scenarios:

If your document is extremely complex and does not follow any rules,
XML_Unserializer might not be able to extract the needed information.
XML_Parser still can do that, although it requires more work.
If you only need to extract a portion of an XML document, XML_Parser
might be faster than XML_Unserializer, as you can tell it to ignore the rest of
the document.
When parsing large XML documents, XML_Parser might be better suited for
the task, as its memory footprint is lower than XML_Unserializer's.

•

•

•

•

•

•

•

•

Chapter 3

[157]

XML_Unserializer will keep all the data contained in the document in memo-
ry. XML_Parser stores the information collected from the XML document in a
database while parsing the document, not after you have finished parsing it.

Parsing RSS with XML_RSS
RSS is an acronym that refers to the following three terms:

Rich Site Summary
RDF Site Summary
Really Simple Syndication

As the last term implies, RSS is used for syndication of the content, so you can offer
other websites and clients access to your content or include third-party content in
your website. RSS is commonly used by web logs and news aggregators.

As RSS is an XML application, you may use any of the previously covered packages,
but PEAR provides a package that is aimed only at extracting information from any
RSS document and which makes working with RSS extremely easy. Using XML_RSS
you can display the headline from your favorite blogs on your website with less than
ten lines of code. Or you could even list the latest releases of your favorite PEAR
packages, developer, or category on your website and offer links to the download
pages. The PEAR website offers various feeds (this is how URLs providing RSS
documents are commonly called), that include either all package releases or
only the latest releases of a package, a category, or a developer. You will find a
list of all available feeds and the matching URLs on the PEAR website at
http://pear.php.net/feeds/. In the following examples we will be working with
the feed that provides information about the latest releases in the XML category;
this feed is available at http://pear.php.net/feeds/cat_xml.rss. If you open
this URL in your browser or download it, you will see an XML document with the
following structure.

<?xml version="1.0" encoding="iso-8859-1"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <channel rdf:about="http://pear.php.net/">
 <link>http://pear.php.net/</link>
 <dc:creator>pear-webmaster@lists.php.net</dc:creator>
 <dc:publisher>pear-webmaster@lists.php.net</dc:publisher>
 <dc:language>en-us</dc:language>
 <items>
 <rdf:Seq>

•

•

•

Working with XML

[158]

 <rdf:li rdf:resource="http://.../XML_Serializer/
 download/0.16.0/" />
 <rdf:li rdf:resource="http://.../XML_SVG/download/1.0.0/" />
 <rdf:li rdf:resource="http://.../XML_FastCreate/
 download/1.0.0/" />
 </rdf:Seq>
 </items>
 <title>PEAR: Latest releases in category xml</title>
 <description>The latest releases in the category xml</description>
 </channel>
 <item rdf:about="http://.../XML_Serializer/download/0.16.0/">
 <title>XML_Serializer 0.16.0</title>
 <link>http://pear.php.net/package/XML_Serializer/
 download/0.16.0/</link>
 <description>
XML_Serializer:
- introduced constants for all options (this helps avoiding typos in
 the option names)
- deprecated option 'tagName' is no longer supported, use
 XML_SERIALIZER_OPTION_ROOT_NAME (or rootName) instead
- implement Request #3762: added new ignoreNull option to ignore
properties that are set to null when serializing objects or arrays
- fixed bug with encoding function
- use new header comment blocks
XML_Unserializer:
- fix bug #4075 (allow tagMap option to influence any kind of
 value)</description>
 <dc:date>2005-06-05T09:26:53-05:00</dc:date>
 </item>
 <item rdf:about="http://.../XML_SVG/download/1.0.0/">
 <title>XML_SVG 1.0.0</title>
 <link>http://pear.php.net/package/XML_SVG/download/1.0.0/</link>
 <description>PHP5 compatible copy() method.</description>
 <dc:date>2005-04-13T19:33:56-05:00</dc:date>
 </item>
 <item rdf:about="http://.../XML_FastCreate/download/1.0.0/">
 <title>XML_FastCreate 1.0.0</title>
 <link>http://pear.php.net/package/XML_FastCreate/download/1.0.0/
 </link>
 <description>BugFix PHP5 ; scripts/example added ; stable
 release.</description>
 <dc:date>2005-03-31T10:41:23-05:00</dc:date>
 </item>
 <!--
 ...More item elements have been removed to save space...

Chapter 3

[159]

 -->
</rdf:RDF>

This document contains information about two things. First is the global information
about the channel that provides the feed and the feed itself. This information
includes the title and the description of the feed, the URL of the website that
provides the feed, the language of the feed, and information about the publisher and
creator of the feed. Next, the feed contains several entities that describe the news
entries in the feed; in this case the news entries refer to package releases. Each of
these entries is enclosed in an <item> tag and stores the following information:

Title
Description
URL of a page that provides further information about the entry
Date this information was published

Accessing all the information is extremely easy using XML_RSS; just execute these
three steps:

1. Include XML_RSS in your code and create a new instance of XML_RSS.
2. Parse the RSS feed.
3. Fetch the information from the XML_RSS object.

Here is a simple script that extracts the channel information and displays it as HTML.

require_once 'XML/RSS.php';

$rss = new XML_RSS('http://pear.php.net/feeds/cat_xml.rss');
$rss->parse();

$channel = $rss->getChannelInfo();

print "Channel data
\n";
printf("Title: %s
\n", $channel['title']);
printf("Description: %s
\n", $channel['description']);
printf("Link: %s
\n", $channel['link'],
 $channel['link']);

Open this script in your browser and you will see the following output:

Channel data

Title: PEAR: Latest releases in category xml

Description: The latest releases in the category xml

Link: http://pear.php.net/

•

•

•

•

Working with XML

[160]

To build a list with the latest releases of all XML-related packages in PEAR you only
need to modify the script a bit:

require_once 'XML/RSS.php';

$rss = new XML_RSS('http://pear.php.net/feeds/cat_xml.rss');
$rss->parse();

$channel = $rss->getChannelInfo();

print 'Channel data
';
printf('Title: %s
', $channel['title']);
printf('Description: %s
', $channel['description']);
printf('Link: %s
', $channel['link'],
 $channel['link']);
print '';
$items = $rss->getItems();
foreach ($items as $item) {
 $date = strtotime($item['dc:date']);
 printf('%s (%s)', $item['link'],
 $item['title'],
 date('Y-m-d', $date));
}
print '';

This will print an unordered list of the latest ten packages below the general
channel information. What's really great about this is that you can use exactly the
same script to display the latest releases of any PEAR developer—just replace the
URL of the feed with http://pear.php.net/feeds/user_schst.rss, for example.
You can even use the same script to display a feed from any other website or
blog. To display the latest news from blog.php-tools.net, just use the URL
http://blog.php-tools.net/feeds/index.rss2 and you will see news from the
PAT web log. However you need to make a small adjustment to the script, as RSS
version 2 uses <pubDate/> instead of the <dc:date/> tag. If you want to be able to
read and display both RSS versions, just make this small modification to your script:

$items = $rss->getItems();
foreach ($items as $item) {
 if (isset($item['dc:date'])) {
 $date = strtotime($item['dc:date']);
 } elseif ($item['pubDate']) {
 $date = strtotime($item['pubDate']);
 }
 printf('%s (%s)', $item['link'],
 $item['title'],

Chapter 3

[161]

 date('Y-m-d', $date));
}

Although the PEAR feeds do not use this feature, it is possible to store information
about images that should be displayed in conjunction with the feed. XML_RSS
provides a method to extract this information from the feed:

$images = $rss->getImages();
foreach ($images as $image) {
 $size = getimagesize($image['url']);
 printf('
',
 $image['url'],
 $size[0],
 $size[1],
 $image['title']);
}

If you append this code snippet to your script you should see an image below the list
of news entries in your browser.

As you have seen, integrating a news feed in your website is easy once you start
working with the XML_RSS package in PEAR.

Summary
In this chapter, we have learned how to use several PEAR packages that can be used
when working with XML. XML_Util, XML_FastCreate, and XML_Serializer can be
used to easily create generic XML documents without having to worry about the
rules of well-formed XML documents or tag indentation. XML_XUL allows us to
create applications for Mozilla-based browsers like Firefox using PHP. This allows
us to share the business logic with standard web applications but exchange the front
end of our applications with an XUL-based interface.

In the second half of the chapter we have learned how to build a SAX-based parser to
read an XML-based configuration file and automatically ignore the parts of the XML
document that are not important to us. We have used XML_Unserializer to create
arrays and objects from virtually any XML document. This allows us easy access
to information stored in an XML document without needing to know anything
about the parsing process itself. Last, we used the XML_RSS package to display the
contents of an RSS feed in any PHP-based application.

Web Services
Web applications are moving closer to the center of today's infrastructures. While
desktop applications have been the most important part of software development,
more and more companies are moving their applications to the Web so they can be
controlled from anywhere with any modern browser. This way, employees need not
sit in front of their desktop computer in the office, but are able to use the applications
from any place in the world.

Still, these applications often need to connect with other applications as nobody
can afford a complete redesign and redevelopment of all the software components
used by a company. So quite often these new web applications, often developed in
PHP, have to live in a heterogeneous environment and communicate with various
applications written in various programming languages like C/C++, Perl, Java,
or even COBOL. In times past, developers often used CORBA or COM to enable
communication between these applications, but the triumph of the Internet was
also the dawn of modern day web services. These web services make use of proven
protocols like HTTP, open standards like XML, and applications like web servers.

It all started with a very simple XML-based protocol: XML-RPC, short for XML
Remote Procedure Call, was the first of the web service protocols that became
popular and still is used by a lot of companies and applications. The evolution of
XML-RPC led to SOAP, which takes lot of inspiration from XML-RPC but is a lot
more flexible and also more complex. SOAP is now supported by almost every
programming language, including PHP.

As these protocols were often too complex or too static for some companies, they
developed their own proprietary protocols, usually based on XML. These protocols
often have a lot in common with each other and the term REST (Representational
State Transfer) has been coined to describe a web service that does not use one of the
official protocols, but still is based on HTTP and XML.

Web Services

[164]

In this chapter you will learn about the packages PEAR offers when it comes to
working with various web services.

Consuming Web Services
When working with web services, most people start by consuming a service that is
offered by somebody else. There are two different reasons why you might want to
consume a web service:

1. You need to access customer data that cannot be accessed just by sending
queries to the database. The reason for this might be security or the use of
a data source not supported by PHP. Often the reason might be that you
also want to access business logic that somebody else in your company has
already implemented in Java, for example.

2. You want to use a service provided by another company. For example, if you
want to integrate a search into your website, why would you bother writing
a new search engine, if you could just as well use the search service offered
by Google and pay for using this service. It will probably still be cheaper than
implementing all the features Google has to offer. The same applies if you
want to build an online auction, sell books, etc. There already are companies
out there who offer top-notch solutions for a lot of web applications, and by
using their services, you can rely on their business logic while maintaining
your corporate identity.

In the first part of this chapter we will use web services that rely on the standard
protocols XML-RPC and SOAP, using the respective PEAR packages. After that we
will take a look at the Services_Google package, which makes working with the
Google web service even easier, although Google is one of the companies that offer a
SOAP-based web service. After working with all of those standard protocols, we will
take a look at Services_Ebay, which offers an easy-to-use API for the proprietary
eBay web services. This is unique, as it is a mixture of typical REST-based services
and SOAP. Last, we will use two PEAR packages that are not part of PEAR's web
services category to consume REST-based web services. With the help of these two
packages you will be able to consume almost any REST-based services, even if there
is no proxy implementation available in PEAR.

Consuming XML-RPC-Based Web Services
XML-RPC, the acronym for XML Remote Procedure Call, has been developed by
Userland Software. It is a protocol to call functions on a different server using the
HTTP protocol by encoding the function calls and the return value in XML. To use an
XML-RPC service, you have to compose the XML containing the method name and

Chapter 4

[165]

all function arguments and send it to the server via an HTTP Post request. The server
will parse the incoming XML, invoke the method, and create an XML document
containing the result value, which will then be sent back to the original caller. Your
script will then need to parse the XML it receives and extract the return value of
the function.

Userland Software provides a very simple test service, which we will use in the
following example. This service is able to return the name of a state of the USA,
based on an integer value you pass to the service. The method offered by this service
is examples.getStateName() and to call this method, you need to compose the
following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value><int>15</int></value>
 </param>
 </params>
</methodCall>

If the server receives this XML document, it will decode it and call the method
examples.getStateName() and pass the integer value 15 as an argument to the
method. After invoking the method, the XML-RPC service will create a new XML
document containing information about the return value and send this document
back to the client who sent the request:

<methodResponse>
 <params>
 <param>
 <value><string>Iowa</string></value>
 </param>
 </params>
</methodResponse>

So the state represented by the number 15 is Iowa.

This is all you need to know to work with the XML-RPC protocol. With the
knowledge you gained about creating and processing XML documents in Chapter
3, you could probably already write your own XML-RPC client. But there is no need
to do this as PEAR already provides an easy-to-use XML-RPC implementation. It
is probably already installed, as PEAR has been using the XML-RPC protocol for
communication between the PEAR installer and the PEAR repository since prior to
PEAR version 1.4.0. So all you need to do is include it and use it in your applications.

Web Services

[166]

A script accessing the Userland example service can be written with
PEAR's XML_RPC package in less than ten lines (if you do not count documentation
and error handling):

require_once 'XML/RPC.php';

// create a new client
$client = new XML_RPC_Client('/RPC2', 'betty.userland.com');

// encode the parameters for the message
$params = array(
 new XML_RPC_Value(15, 'int')
);
// encode the method call in XML
$message = new XML_RPC_Message('examples.getStateName', $params);

// send the XML-RPC message
$response = $client->send($message);

// Check whether an error occured
if ($response->faultCode())
{
 echo "Could not use the XML-RPC service.\n";
 echo $response->faultString();
 exit();
}

// get the return value
$value = $response->value();

// decode the XML_RPC_Value object to a plain PHP variable
$stateName = XML_RPC_decode($value);

echo "The state is $stateName\n";

As with every script using PEAR, we start by including the package we want to use.
Next, we create a new client for the service we plan to access. The constructor of the
XML_RPC_Client class needs at least two parameters:

The path of the service on the server (in this case, the service is located
at /RPC2)
The hostname of the service (in this case, betty.userland.com)

You could also pass more parameters to the constructor if the service is not located
on port 80 or if you want to access the service through proxy. If you have to use a

•

•

Chapter 4

[167]

proxy with XML_RPC, the manual at http://pear.php.net/manual/en/package.
webservices.xml-rpc.php will explain all the parameters you can use. After that
we need to compose the XML for the method call we want to send to the server. To
do this, we need to follow these steps:

1. First we create a numbered array containing the function arguments as
XML_RPC_Value objects. For our simple example, we need only one
argument, the integer value for which we want to retrieve the state name.
The constructor of the XML_RPC_Value class accepts two parameters: the
value to encode and the type of the value. If you omit the type, the type
string will be assumed.

2. The newly created array will then be used to encode the actual method call,
by creating a new instance of XML_RPC_Message. The constructor of this
class requires two parameters: the name of the method to call and an array
of XML_RPC_Value objects containing the arguments for the method call. To
sum up, two lines of code are needed to create the complete XML document:

 // encode the parameters for the message
 $params = array(new XML_RPC_Value(15, 'int'));
 // encode the method call in XML
 $message = new XML_RPC_Message('examples.getStateName', $params);

To send this XML-RPC message to the service, call the send() method of the client
and pass XML_RPC_Message as its sole argument. This method will return an instance
of XML_RPC_Response, which represents the XML document that the server sent back.

This object provides an easy way to check whether an error occurred while invoking
the remote procedure call. If the faultCode() method of the object does not return
zero, it indicates that something has gone wrong. In this case, you can use the
faultString() method to get a readable interpretation of the error that happened.

If no error occurred, you can use the value() method to extract the return value
from the response. However, this is an instance of XML_RPC_Value, which contains
the actual value as well as type information about the value. If you try to print it to
the screen, you will not see the name of the state as expected, but something like
Object id #4. You need to extract the actual value and convert it to a simple PHP
value before you can use it. XML_RPC provides the XML_RPC_decode() function,
which does this for you. The return value of this function now is the expected string
containing the state name. So if you run the script, it will output:

The state is Iowa

With PEAR, using web services is a lot easier than you probably thought. As this
example is of no use in real life, you probably aspire to use a complex web service
built with XML-RPC. As the PEAR installer uses XML-RPC for communication
with the PEAR website, you might think that you could use the same technique to

Web Services

[168]

communicate with the website. And yes, you are correct; this is easily possible with
the XML_RPC package. If you have PEAR version 1.4.0 or higher installed, the installer
is able to tell you which XML-RPC methods the PEAR service for any channel
provides. All you need to do is run the command pear channel-info pear.php.net
and you will see something like this:

Channel pear.php.net Information:
=================================
Name and Server pear.php.net
Alias pear
Summary PHP Extension and Application Repository
Validation Package Name PEAR_Validate
Validation Package default
Version
Server Capabilities
===================
Type Version/REST type Function Name/REST base
xmlrpc 1.0 logintest
xmlrpc 1.0 package.listLatestReleases
xmlrpc 1.0 package.listAll
xmlrpc 1.0 package.info
xmlrpc 1.0 package.getDownloadURL
xmlrpc 1.1 package.getDownloadURL
xmlrpc 1.0 package.getDepDownloadURL
xmlrpc 1.1 package.getDepDownloadURL
xmlrpc 1.0 package.search
xmlrpc 1.0 channel.listAll
rest REST1.0 http://pear.php.net/rest/

The highlighted lines list the XML-RPC methods provided by this service. All that
you need to know is where the service is located so you can create a new client. For
the PEAR website, the service is located at http://pear.php.net/xmlrpc.php. So if
we want to search the PEAR website for a package that contains the term 'XML' in its
name, all that is needed is the following script:

require_once 'XML/RPC.php';

$client = new XML_RPC_Client('/xmlrpc.php', 'pear.php.net');

$params = array(new XML_RPC_Value('XML', 'string'));
$message = new XML_RPC_Message('package.search', $params);

$response = $client->send($message);

if ($response->faultCode())
{

Chapter 4

[169]

 echo "Could not use the XML-RPC service.\n";
 echo $response->faultString();
 exit();
}

$value = $response->value();
$packages = XML_RPC_decode($value);

foreach ($packages as $packageName => $packageInfo)
{
 echo "<h1>$packageName</h1>\n";
 echo "<p>{$packageInfo['summary']}<p>\n";
}

For this example we have used the package.search() method provided by the
PEAR website service. This method returns an associative array over which we can
easily iterate using a simple foreach() loop, as if the data had been delivered by
any local source. Running this script will output:

XML_Beautifier: Class to format XML documents.
XML_CSSML: The PEAR::XML_CSSML package provides methods for creating
cascading style sheets (CSS) from an XML standard called CSSML.
XML_FastCreate: Fast creation of valid XML with DTD control.
XML_fo2pdf: Converts a xsl-fo file to pdf/ps/pcl/text/etc with the
help of apache-fop
XML_HTMLSax: A SAX parser for HTML and other badly formed XML
documents
XML_image2svg: Image to SVG conversion
XML_NITF: Parse NITF documents.
XML_Parser: XML parsing class based on PHP's bundled expat
XML_RPC: PHP implementation of the XML-RPC protocol
XML_RSS: RSS parser
XML_SVG: XML_SVG API
XML_Transformer: XML Transformations in PHP
XML_Tree: Represent XML data in a tree structure
XML_Util: XML utility class.
XML_Wddx: Wddx pretty serializer and deserializer

Of course the result might differ, as the packages provided by PEAR change
frequently. This is what's really great about using web services; you always get the
most current data.

Web Services

[170]

Accessing the Google API
Google is one of the most popular sites to offer its functionality as a web service,
and while the API is still labelled beta, it still is one of the most commonly used
web services. You can learn more about the Google web service on its website at
http://www.google.com/apis/. In order to access the Google API you will need
to create a Google account. With this registration, you will receive a Google API key
that you will have to supply with every request you send to the web service. This
account entitles you to make 1,000 requests to the search API per day, free of charge.

As Google offers a SOAP-based service, you could easily use PHP 5's new SOAP
extension to query the Google web service. For example, if you want to search for the
phrase "Packt Publishing" using the Google API, the following code is required:

// Your personal API key
$myGoogleKey = 'YOURKEYHERE';

$google = new SoapClient('http://api.google.com/GoogleSearch.wsdl');
$result = $google->doGoogleSearch(
 $myGoogleKey, // License key
 'Packt Publishing', // search phrase
 0, // first result
 10, // Number of results to
 return
 false, // do not return similar
 results
 '', // restrict to topics
 true, // filter adult content
 '', // language filter
 '', // input encoding, ignored
 '' // output encoding,
 ignored
);

// Display the titles of the first ten pages
$i = 1;
foreach ($result->resultElements as $entry)
{
 printf("%02d. %s\n", $i++, $entry->title);
}

The new SOAP extension is able to create proxy clients from any WSDL document
you pass to the constructor. So you can easily call the methods provided by Google
on this object. Nevertheless, using the client is not as simple as it could be, as you
always have to specify all of the ten parameters although most times you do not even

Chapter 4

[171]

need them. That means you will have to remember the parameter order, otherwise
the Google web service will react with a SOAP fault to your query. This is very
annoying, as the last two parameters (input and output encoding) are not used by
the web service but SOAP requires them to be passed.

With Services_Google, PEAR provides an easy-to-use wrapper around the SOAP
extension, which makes dealing with the Google API a lot easier. The code required
to send exactly the same query using Services_Google is a lot easier to read:

require_once 'Services/Google.php';

$myGoogleKey = 'GetYourOwnKey';
$google = new Services_Google($myGoogleKey);
$google->queryOptions['limit'] = 10;
$google->search('Packt Publishing');

$i = 1;
foreach($google as $entry)
{
 printf("%02d. %s\n", $i++, $entry->title);
}

After including the Services_Google class, you have to pass your API key and
you can instantly start accessing the Google web service using the methods that
Services_Google provides. You can easily set the limit for the search by accessing
the queryOptions property of the newly created object. After that, you invoke the
search() method and pass the search phrase as its sole argument. However, this
will not automatically invoke the web service. The web service will only be used
when you start accessing the results of the search. The Services_Google class
implements the Iterator interface, which enables you to use the object like an array
in a foreach loop as seen in the example. This means that the query will be sent just
in time, when you need it.

So if you run this script, your result should look similar to this:

01. Packt Publishing Book Store
02. Asterisk
03. User Training for Busy Programmers
04. Building Websites with Mambo
05. Learning eZ publish 3
06. Building Websites with OpenCms
07. Content Management with Plone
08. BPEL
09. Building Online Stores with osCommerce: Beginner Edition
10. Packt Publishing | Gadgetopia

Web Services

[172]

Besides the limit parameter, several other query options can be specified before
using the search() method. The following table gives you an overview of the
available options. If you are familiar with the Google web service, you will
recognise that these are almost the same parameters that can be passed to the
doGoogleSearch() method of the service.

Option name Description Default value
start Number of the first result to fetch 0

maxResults Maximum results to fetch at once 10

limit Maximum results to fetch in total false

filter Whether to ignore similar results true

restricts Whether to restrict the search to any topics empty string
safeSearch Whether to ignore adult content true

language Language to restrict the search to empty string

Still, there is one option that is not native to the Google web service. The limit option
can be used to restrict the total number of search results that will be returned by
Services_Google. The doGoogleSearch() method of the web service is only able to
return 10 results per invocation. To retrieve the next 10 result pages, you will have to
call the web service again.

When using Services_Google, this is done automatically for you when iterating
over the result set. Just try it by increasing the value used for the limit option to 20.
To process the results, still only one foreach loop is needed.

At the time of writing, Google also offers a spelling suggestion service and the ability
to fetch the contents of a page from the Google cache. Of course, Services_Google
also provides wrappers to access these services. Here is an example of how to access
the spelling suggestions:

require_once 'Services/Google.php';

$myGoogleKey = 'GetYourOwnKey';

$google = new Services_Google($myGoogleKey);
$suggestion = $google->spellingSuggestion('HTTP portocrol');
echo $suggestion;

As expected, this simple script will output the correct spelling HTTP protocol.
Retrieving a page from the Google cache is also this easy, as the following code shows:

require_once 'Services/Google.php';

Chapter 4

[173]

$myGoogleKey = 'GetYourOwnKey';

$google = new Services_Google($myGoogleKey);
$html = $google->getCachedPage('http://pear.php.net/');

echo $page;

If you run this script in your browser, you should see the typical output of the
Google cache—the original page plus the Google cache page header, which provides
information about the cached data.

As you have seen, working with the Google API gets even easier when using the
Services_Google package.

Consuming REST-Based Web Services
As SOAP is an extremely complex protocol, a lot of the newer services are offered
using a simpler protocol called REST. The next part of this chapter is devoted to
consuming these services using PHP and PEAR.

Searching Blog Entries with Services_Technorati
While conventional search engines like Google allow you to search for specific
keywords on any website, there are several search engines that focus on a
smaller part of the Web. One of these specialized search engines is Technorati
(http://www.technorati.com), a search engine that only searches for your
keywords in web logs. Of course, Technorati also offers a web service API for you
to use its service in your site; otherwise, we would not deal with it in this chapter. But
before we take a deeper look at the API, let us first take a look at how Technorati works.

As a blog owner, you can easily register at for free at Technorati and claim your blog.
By claiming your blog, you make it available to the Technorati index and Technorati
will periodically index all of your blog entries. Apart from this, it will also try to
detect links from your blog to other registered web logs and vice versa. This data
will be used to calculate the ranking of your blog in the Technorati blog listing.
Furthermore Technorati offers a JavaScript snippet that you can easily add to your
web log, which adds useful Technorati-related links to your site. Technorati provides
step-by-step instructions for claiming new blogs.

Now that we know what Technorati is, let us go back to the API offered by Technorati.
When designing its API, it decided that it neither wanted to use XML-RPC nor SOAP
for its web service, but defined a proprietary XML-based protocol. However, the
transport layer for its protocol still is HTTP. The approach Technorati has been
taking is called REST and is getting more and more popular, as it's easier to use than

Web Services

[174]

XML-RPC and SOAP and in most cases provides all the features necessary for the web
service API. We will deal with writing REST-based clients and servers later in this
chapter. For now, we do not have to worry about the inner workings of REST, as PEAR
already provides a client implementation for the Technorati web service. The package
you need to install is Services_Technorati and you will need at least the packages
HTTP_Request and XML_Serializer. You will probably already have them installed
as both are common packages.

After installing the client, you will have to register for the Technorati developers'
program at http://www.technorati.com/developers/devprogram.html in order
to receive your personal API key. Registering at the developers' program is easy;
if you already have a standard Technorati account you will have to answer some
questions about your plans with the API and agree to the terms and conditions of the
developers' program. Once your registration is complete you can access your API
key on the website at http://www.technorati.com/developers/apikey.html.
More information about the API and the developers' program can also be found at
the developer wiki at http://developers.technorati.com/wiki. If you intend
to access the API using Services_Technorati, you can skip the information in the
wiki, as the package provides an intuitive way to access the service.

Using Services_Technorati in your scripts is nearly the same as any other
PEAR package:

1. Include the package
2. Set up an instance of the class you want to use
3. Use the methods the object provides

Here is a very simple example that searches for the term "Packt publishing" in all
registered web logs:

/**
 * Uses the Services_Technorati package
 */
require_once 'Services/Technorati.php';

// Replace this with your API key
$myApiKey = 'YOURKEYHERE';

// Create a new instance based on your key
$technorati = Services_Technorati::factory($myApiKey);

// Use the service, this will return an associative array
$result = $technorati->search('Packt Publishing');

Chapter 4

[175]

// Iterate through the result set
$position = 1;
foreach ($result['document']['item'] as $entry)
{
 printf("%02d. %s\n%s\n\n", $position++, $entry['title'],
$entry['excerpt']);
}

If you run this script it will output something like this:

01. An Evening with Joomla's Mitch Pirtle
Last night BostonPHP hosted an evening with Mitch Pirtle of Joomla!
fame at our our Boston office ... with the initiative. <strong
class="keyword">Packt <strong class="keyword">publishing</
strong>, who sells Building Websites With Mambo, is planning on
<strong class="keyword">publishing a similar Joomla! book. I
have not recently talked to the Mambo team, which has reloaded

02. Permanent Link to
Building a Custom Module for DotNetNuke 3.0This sample chapter from
<strong class="keyword">Packt <strong class="keyword">Publ
ishing "Building Websites with VB.NET and DotNetNuke 3.0"
illustrates how to build and use a custom module

03. Packt Publishing December 2005 Newsletter
The latest <strong class="keyword">Packt <strong
class="keyword">Publishing newsletter is available online:

Of course the displayed results will differ as there surely will be new blog entries
about Packt Publishing by the time you are reading this book.

This example has already demonstrated that you do not need to know anything
about the internals of the API as this functionality is hidden inside the Services_
Technorati package. Of course, searching for blog entries is not all that the package
has to offer. If you know the name of any Technorati user, you can easily get
information about this user from the Technorati service as the following example
demonstrates:

/**
 * Uses the Services_Technorati package
 */
require_once 'Services/Technorati.php';

// Replace this with your API key
$myApiKey = 'YOURAPIKEY';

// Create a new instance based on your key

Web Services

[176]

$technorati = Services_Technorati::factory($myApiKey);

// Get information about any technorati user
$result = $technorati->getInfo('schst');

print_r($result);

Just replace the username schst with the one you supplied when registering at
the Technorati website and you should see information quite similar to this, but of
course containing your name:

Array
(
 [version] => 1.0
 [document] => Array
 (
 [result] => Array
 (
 [username] => schst
 [firstname] => Stephan
 [lastname] => Schmidt
 [thumbnailpicture] =>
 http://www.technorati.com/progimages/
 photo.jpg?uid=132607&mood=default
)
 [item] => Array
 (
 [weblog] => Array
 (
 [name] => a programmer's best friend
 [url] => http://blog.php-tools.net
 [rssurl] =>
 http://blog.php-tools.net/feeds/index.rss2
 [atomurl] => http://blog.php-tools.net/
 feeds/atom.xml
 [inboundblogs] => 0
 [inboundlinks] => 0
 [lastupdate] => 2005-10-17 17:51:48 GMT
 [rank] =>
 [lat] => 0
 [lon] => 0
 [lang] => 26110
)
)
)
)

Chapter 4

[177]

You could easily use this information to create a profile page with a listing for all
blogs a user owns at your own website.

While registering for the developers' program is free, the number of API calls you are
allowed to make per day is limited. However, you do not have to count the API calls
you made per day to decide whether you still have some calls left, instead you can
simply ask the API with a call to:

$result = $technorati->keyInfo();
$callsMade = (int)$result['document']['result']['apiqueries'];
$callsMax = (int)$result['document']['result']['maxqueries'];
$callsLeft = $callsMax - $callsMade;
echo "You have made {$callsMade} of {$callsMax} allowed API calls
 today. You still have {$callsLeft} API calls left";

This will output the number of queries you already made as well as the number of
queries you are allowed to make per day. Calls to the keyInfo() method do not
count as queries, so you may make as many of them as you like per day.

The Technorati Cosmos
The last functionality we will be dealing with is the Technorati cosmos. The cosmos
tries to link the different blogs by analyzing all blog entries and extracting links from
a blog to all other blogs and vice versa. The following example will explain how the
cosmos can be accessed using the Services_Technorati API:

/**
 * Uses the Services_Technorati package
 */
require_once 'Services/Technorati.php';

// Replace this with your API key
$myApiKey = 'YOURAPIKEY';

// Create a new instance based on your key
$technorati = Services_Technorati::factory($myApiKey);

// Specify further options for the search
// We limit the result to ten links
$options = array('limit' => 10);

//Search blogs linking to the PEAR website
$result = $technorati->cosmos('http://pear.php.net', $options);

// Display some basic information
print "Searching for blogs that link to http://pear.php.net\n\n";

Web Services

[178]

printf("Number of blogs found: %d\n", $result['document']['result']['i
nboundblogs']);
printf("Number of links found: %d\n", $result['document']['result']['i
nboundlinks']);

// Iterate through the found links
print "\nFirst ten links:\n\n";
foreach ($result['document']['item'] as $link)
{
 printf("Link on %s to %s\n",
 $link['weblog']['name'],
 $link['linkurl']);
}

If you execute this script it will output something similar to:

Searching for blogs that link to http://pear.php.net

Number of blogs found: 590
Number of links found: 1837

First ten links:

Link on satoru 120% to http://pear.php.net/manual/ja/
Link on satoru 120% to http://pear.php.net/
Link on minfish.jp/blog to http://pear.php.net/package/
Spreadsheet_Excel_Writer
...
Link on Ciro Feitosa | Desenvolvedor Web to http://pear.php.net/
 packages.php?catpid=7&catname=Database

So if you are interested in a topic, Technorati helps you find pages that may provide
more information on this topic by providing URLs of blog entries that link to
your topic.

In this example we passed a second parameter to the cosmos() method to specify a
limit for the search results. Most of the methods provided by Services_Technorati
allow you to pass an additional associative array containing several options. You can
find a list of all available methods and their respective options in the PEAR manual
at http://pear.php.net/manual/en/package.webservices.
 services-technorati.php.

Chapter 4

[179]

Accessing the Amazon Web Service
Another website that offers a web service based on a proprietary XML protocol is
Amazon.com. Amazon tries to improve sales by offering an associates program
where anybody may place links to products offered on the Amazon website. If any
customer buys the product after being referred by the associate's website, the partner
will receive a commission based on the price of the product.

To further improve sales triggered by the associates, Amazon offers a web service API
to its partners so they can include several Amazon-related features on their website.

Setting up an Amazon Account
To use this web service, you need to start by registering as an Amazon associate
at http://www.amazon.com/gp/browse.html/?node=3435371. After you finish
registering as an Amazon associate you can start making money, but if you want
to use the web service (and you will surely want to) you will have to create a web
services account at http://www.amazon.com/gp/browse.html/?node=3435361.
Amazon will then send you an email containing a subscription ID that will be used
to identify your account when making web service calls. Make sure you save the
token somewhere it will not get lost.

Now that you have a subscription ID all you need to do is install the Services_
Amazon package and all of its dependencies and you can start using the Amazon web
service. The package provides two classes that you may use to access the service:

Services_Amazon

Services_AmazonECS4

While Services_Amazon implements version 3.0 of the Amazon web service API,
Services_AmazonECS4 implements the new version 4.0 of the API, which is a lot
more powerful. Furthermore, Services_AmazonECS4 provides advanced features
like integrated caching for the search results, which can help you improve the
performance of your Amazon-based application. As the old version does not provide
any features that are missing in the new version, we will focus completely on
Services_AmazonECS4.

Setting up the package can be done in a few lines:

/**
 * Uses the Services_AmazonECS4 class
 */
require_once 'Services/AmazonECS4.php';

// Your subscription id
$subscriptionId = 'YOURAPIKEY';

•

•

Web Services

[180]

// Your associates id
$accociateId = 'schstnet-20';

// create a new client by supplying
// subscription id and associates id
$amazon = new Services_AmazonECS4($subscriptionId, $accociateId);
$amazon->setLocale('US');

Once you have included the class, instantiate a new instance and pass the web
service subscription ID. As an optional parameter you may also pass your associate
ID. If this ID has been passed, all returned URLs will automatically contain your
associate ID so you can include them in your application. Any orders triggered by
these links will be attached to your account and you will receive money for them.
After the instance has been created, the setLocale() method will be used to set the
website that will be used for the following API calls.

The following table lists all locales available and their respective Amazon shops.

Locale Amazon website
US amazon.com (USA)
UK amazon.co.uk (United Kingdom)
DE amazon.de (Germany)
JP amazon.co.jp (Japan)
FR amazon.fr (France)
CA amazon.ca (Canada)

Now that the client is set up correctly, you can start calling the various methods.

Searching the Amazon.com Website
We will start with a very simple keyword-based search on the Amazon.com website
with the following example:

$options = array();
$options['Keywords'] = 'PEAR';
$result = $amazon->ItemSearch('Books', $options);

To search for items we can use the ItemSearch() method, which accepts two
parameters—the item index in which we want to search and an associative array
containing options for the search. In this example we use this option only to supply
the keyword we want to search for.

The ItemSearch() method will return a PEAR_Error object if the search failed or
otherwise an array containing the search results as well as meta-information about

Chapter 4

[181]

the search. The following code snippet can be used to react on these two result types
and display the data to the user:

if (PEAR::isError($result))
{
 print "An error occured\n";
 print $result->getMessage() . "\n";
 exit();
}

foreach ($result['Item'] as $book)
{
 $title = $book['ItemAttributes']['Title'];
 $author = $book['ItemAttributes']['Author'];
 if (is_array($author))
 {
 $author = implode(', ', $author);
 }
 printf("%s by %s\n", $title, $author);
}

The output of the complete script is:

Behavior Modification: What It Is and How to Do It (7th Edition) by
Garry L. Martin, Joseph Pear

Web Database Applications with PHP & MySQL, 2nd Edition by
Hugh E. Williams

Learning PHP 5 by David Sklar

PHP Hacks : Tips & Tools For Creating Dynamic Websites (Hacks) by
Jack Herrington

An Instance of the Fingerpost by Iain Pears

The Portrait by Iain Pears

The Prisoner Pear : Stories from the Lake by Elissa Minor Rust

Dream of Scipio by Iain Pears

Apples & Pears : The Body Shape Solution for Weight Loss and Wellness
by Marie Savard, Carol Svec

Each Peach Pear Plum board book (Viking Kestrel Picture Books) by
Allan Ahlberg

While we expected to get books about the PHP Extension and Application
Repository, we instead received several books written by authors named Pear. As
we are only interested in books with the term PEAR in the book title, we modify the
search request just a little bit:

Web Services

[182]

$options = array();
$options['Title'] = 'PEAR';
$result = $amazon->ItemSearch('Books', $options);

Instead of using a keyword-based search, we set the key Title in the options array
and resubmit the search.

The Amazon API documentation

Amazon provides in-depth documentation for all of its web
services. This can be found at http://www.amazon.com/
gp/browse.html/?node=3487571.

The ItemSearch() method allows you to supply a huge list of parameters to be
passed in the option array and there are two ways of retrieving a complete list of
the options for the method. The conventional way would be taking a look at the
API documentation. The second way is using the API to get a list of all available
parameters directly in your application. This can be done using the Help() method
of Services_AmazonECS4:

// create a new client by supplying
// subscription id and associates id
$amazon = new Services_AmazonECS4($subscriptionId, $accociateId);
$amazon->setLocale('US');

$result = $amazon->Help('Operation', 'ItemSearch');

print "Parameters for ItemSearch()\n";
foreach ($result['OperationInformation']['AvailableParameters']
 ['Parameter']
 as
$param)
{
 echo "* $param\n";
}

If you run this script, it will output a list of all parameters that can be set in the
options array:

Parameters for ItemSearch()
* Actor
* Artist
* AssociateTag
* AudienceRating

Chapter 4

[183]

* Author
* Availability
...
* Title
* Validate
* VariationPage
* Version
* XMLEscaping

The Help() method can be used to retrieve information about any of the methods
that the API provides and can even be used to fetch documentation about the Help()
method itself:

$result = $amazon->Help('Operation', 'Help');
print_r($result);

The Help() method not only provides documentation about the available parameters,
but also about the required parameters as well as the possible responses:

Array
(
 [Request] => Array
 (
 [IsValid] => True
 [HelpRequest] => Array
 (
 [About] => Help
 [HelpType] => Operation
)

)
 [OperationInformation] => Array
 (
 [Name] => Help
 [RequiredParameters] => Array
 (
 [Parameter] => Array
 (
 [0] => About
 [1] => HelpType
)
)
 [AvailableParameters] => Array
 (
 [Parameter] => Array

Web Services

[184]

 (
 [0] => AssociateTag
 [1] => ContentType
 [2] => Marketplace
 [3] => Style
 [4] => Validate
 [5] => Version
 [6] => XMLEscaping
)
)
 [DefaultResponseGroups] => Array
 (
 [ResponseGroup] => Array
 (
 [0] => Request
 [1] => Help
)
)
 [AvailableResponseGroups] => Array
 (
 [ResponseGroup] => Array
 (
 [0] => Request
 [1] => Help
)
)
)
)

If a parameter is in the list of required parameters you do not need to add it to the
option array, as the Services_AmazonECS4 client already requests you to pass the
value for the parameter to the method as a separate argument like the $about and
$operation parameters in the getHelp() method.

Controlling the Response
In the next example we will be using two more options of the ItemSearch()
method call: the Sort option as well as the ResponseGroup option. While the first
option is quite self-explanatory, the latter needs to be explained: Amazon stores a
lot of information for every article in its range. If a call to ItemSearch()returned all
available information on every item, the amount of data to be transmitted would grow
extremely large. In most cases only parts of the item data is needed in response to a
search request and the ResponseGroup option allows you to specify the item specific
your application needs. This option accepts a comma-separated list of the XML nodes

Chapter 4

[185]

you want the service to return. Services_AmazonECS4 will automatically convert the
XML nodes into associative arrays so they can be accessed using the tag name.

Now let us take a look what can be achieved using the ResponseGroup option:

// create a new client by supplying
// subscription id and associates id
$amazon = new Services_AmazonECS4($subscriptionId, $accociateId);
$amazon->setLocale('US');

$options = array();
$options['Publisher'] = 'Packt Publishing';
$options['Sort'] = 'salesrank';
$options['ResponseGroup'] = 'ItemIds,ItemAttributes,Images';
$result = $amazon->ItemSearch('Books', $options);

if (PEAR::isError($result))
{
 print "An error occured
\n";
 print $result->getMessage() . "
\n";
 exit();
}

foreach ($result['Item'] as $book)
{
 print '<div style="margin-bottom:20px; clear:both;">';
 printf('<img src="%s"
 title="%s" style="float:left; padding-right: 10px;
 border: 0px;"/>',
 $book['DetailPageURL'],
 $book['SmallImage']['URL'],
 $book['ItemAttributes']['Title']);
 printf('<h3>%s</h3>', $book['ItemAttributes']['Title']);
 if (is_array($book['ItemAttributes']['Author']))
 {
 $book['ItemAttributes']['Author'] = implode(', ',
 $book['ItemAttributes']['Author']);
 }
 printf('<p>%s
%s</p>',
 $book['ItemAttributes']['Author'],
 $book['ItemAttributes']['ListPrice']['FormattedPrice']);
 print '</div>';
}

Web Services

[186]

Run this script in your browser and the result will be a listing of ten Packt Publishing
books alphabetically sorted, including a small image of the cover as the following
screenshot illustrates.

When clicking on the cover of a book you will be redirected to the Amazon website
where you can directly order the book and your associate account will be credited for
the purchase. This has been achieved by setting the ResponseGroup option to ItemI
ds,ItemAttributes,Images, which tells Amazon what kind of information should
be returned for each item matching the search criteria.

Using this setting, the following information will be returned:

ItemAttributes will contain an array of all attributes of each book, like its
author, the manufacturer, the list price, etc.
SmallImage, MediumImage, and LargeImage will contain URLs and sizes of
cover images.
ASIN will contain the unique ID of the item in the Amazon product catalog.

An easy way to see how the returned information can be accessed using PHP is to
pass the return value of the ItemSearch() method to PHP's print_r() function.

•

•

•

Chapter 4

[187]

Additional Services
Of course the Amazon web service provides a lot more methods you can use and
most of the API calls are already supported by Services_Amazon. The range of
features includes:

Remotely controlled carts
Search for and lookup product details
Find similar items
Access wish lists
Access the Amazon marketplace
Access customer reviews

All of these features can be accessed in the same manner as shown with the
ItemSearch() functionality. If you are stuck with a method and are wondering
which options you can pass to it, take a look at the excellent API documentation
provided by Amazon. All XML tags can directly be mapped to associative arrays.

Finally we will use the ItemLookup() API call to illustrate how similar item lookups
are to item searches. The ItemLookup() call will return information for one item
based on its ASIN or ISBN. So if we wanted to get the authors for the excellent
Mastering Mambo book, which has the ISBN 1-904811-51-5, the following code snippet
is required:

// create a new client by supplying
// subscription id and associates id
$amazon = new Services_AmazonECS4($subscriptionId, $accociateId);
$amazon->setLocale('US');

$options = array();
$options['ResponseGroup'] = 'ItemAttributes';
$result = $amazon->ItemLookup('1904811515', $options);

if (PEAR::isError($result))
{
 print "An error occured
\n";
 print $result->getMessage() . "
\n";
 exit();
}

print "The authors are ";
print implode(' and ', $result['Item'][0]['ItemAttributes']['Author']
);

•

•

•

•

•

•

Web Services

[188]

If you run this script, it will output:

The authors are: Tobias Hauser and Christian Wenz

All that differs between the two API calls is the method name and the required
arguments that have been passed to the methods. And that's how all methods of
Services_Amazon work!

Consuming Custom REST Web Services
When using Services_Technorati or Services_Amazon you have already been
using REST-based web services, but the client implementations hid all REST-related
details from you. As REST is an emerging technology, you might want to access a
service for which PEAR does not yet provide a client implementation. But there is
no need to worry, as we will now take a closer look at how easy it is to implement
a client for any REST-based web service using two other PEAR packages: HTTP_
Request and HTTP_Serializer.

As an example web service, we will be using the Yahoo! web service for the
following reasons:

You already know Yahoo! and have probably used its web service in some of
your applications.
It is easy to register for the Yahoo! Web service.
The Yahoo! web service is a typical REST service.
The Yahoo! web service is well documented and easy to use.

Yahoo! offers most of the functionality it provides on its websites as a REST-based
web service as well. In order to use any of its services, you need to get an
application ID, which can be done for free at the Yahoo! developer center at
http://api.search.yahoo.com/webservices/register_application. You
need a Yahoo! ID in order to get an application ID, but registering at Yahoo! is free
of charge as well. This application ID will be transmitted to the Yahoo! web service
every time you use one of its services. This way it can keep track of the API calls
you make.

The Yahoo! service is most famous for its search engine, so we will be using the
search service as an example for REST-based services. However, it also provides
access to the following services:

del.icio.us, its social book marking system
Flickr, its online photo gallery
Yahoo! Maps
The Yahoo! Music Engine

•

•
•
•

•

•
•
•

Chapter 4

[189]

The Yahoo! shopping catalog
And many more…

Most of its services can be accessed in the exact same manner as the search web service.

How REST Services Work
Before we take a closer look at the Yahoo! web service, let's understand how
REST services work in general. Like XML-RPC and SOAP, they use HTTP as their
underlying protocol. However, they do not use HTTP POST to transmit XML data
that contains the method call and its parameters; instead they simply use features
provided by HTTP to wrap the name of the method and its arguments in the request.
In most cases, the method of the API to call is embedded in the path of the URL
that is requested and all arguments for the method call are transmitted in the query
string. So a typical URL for a REST method call could look like this:

http://www.my-site.com/rest/search?query=PEAR&page=1

This URL contains all the information you need to access the web service, which is:

The URL where the service is located (http://www.my-site.com/rest/)
The method to call (search)
The arguments for the method call (query=PEAR and page=1)

To call the same method using XML-RPC or even SOAP, you would have to create
a complex XML document that would be sent to the web service. Still, using a web
service the REST way has one disadvantage: all the arguments for the method calls
do not contain type information and are transmitted as strings. However, this is not a
real disadvantage as the service will know how to handle the arguments and convert
them to their respective types. This is exactly how user input is treated in standard
PHP applications.

After processing the method call, the service will respond similarly to a SOAP or
XML-RPC service and return an XML document. The difference to the two other
services is that there is no XML schema to describe the format of the resulting
XML document. You may return an XML document that fits the result of the query
best. You should check whether the vendor of the service provides a schema or
documentation for the return format.

So the result for this query could be something along the lines of:

<?xml version="1.0" encoding="ISO-88591-"?>
<searchResult>
 <query>PEAR</query>

•

•

•

•

•

Web Services

[190]

 <currentPage>1</currentPage>
 <results total="25" itemsPerPage="10" pages="3">
 <item ranking="1">
 <url>http://pear.php.net</url>
 <title>The PHP Extension and Application Repository</title>
 </item>
 <item ranking="2">
 <url>http://pear.php-tools.net</url>
 <title>The PAT PEAR Channel</title>
 </item>
 <item ranking="3">
 <url>http://www.pearadise.net</url>
 <title>The PEAR Channel directory</title>
 </item>
 ...
 </results>
</searchResult>

The structure of the XML document is quite self-explanatory and can easily be
interpreted by humans as well as an application. The document contains all the
information you would expect from a method call to a search function:

The total number of search results (25)
The number of items per page (10)
The number of pages (3)
Detailed information about each search result

If you stuffed the same amount of information into a SOAP response, the data to
construct, transmit, and parse would be a lot more, leading to longer response times
for your search application. Again, the only disadvantage of using REST is the loss
of type information for the return values but as PHP is a loosely-typed language this
probably won't frighten you.

To call a REST-based web service you will have to follow these simple steps:

1. Construct the URL for the call including all arguments
2. Make an HTTP request and extract the XML document from the response
3. Parse the XML document and extract the information you need

Now that you know how REST basically works we will get back to the Yahoo! web
service and learn how PEAR can aid you in performing these steps.

•

•

•

•

Chapter 4

[191]

Accessing the Yahoo API
In our first example we will access Yahoo's web search, which probably is
the most commonly used API. Documentation for the service is available at
http://developer.yahoo.net/search/web/V1/webSearch.html. To access the
service, we will have to make a HTTP request to http://api.search.yahoo.com/
WebSearchService/V1/webSearch. If you open this URL in your browser, you will
see the following XML document as a response:

<?xml version="1.0" encoding="UTF-8"?>
<Error xmlns="urn:yahoo:api">
 The following errors were detected:
 <Message>invalid value: appid</Message>
</Error>
<!-- ws02.search.re2.yahoo.com uncompressed/chunked Sun Jan 8
04:19:54 PST

 2006 -->

This error message reminds you to pass the application ID to every request you
make to this service. So the request URL needs to be modified by appending it and
now is http://api.search.yahoo.com/WebSearchService/V1/webSearch?appid
=YOURAPIKE Y. However, this still results in an error:

<?xml version="1.0" encoding="UTF-8"?>
<Error xmlns="urn:yahoo:api">
 <Title>The following errors were detected:</Title>
 <Message>invalid value: query</Message>
</Error>
<!-- ws02.search.re2.yahoo.com uncompressed/chunked Sun Jan 8
04:23:28 PST

 2006 -->

While you are now correctly accessing the search service, you did not tell the service
what you want to search for and so it reacts with an error message. To finally get
some useful results, you will have to append &query=PEAR to the URL to search the
Yahoo! directory for the term PEAR. If you open the modified URL in your browser,
it will return the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:yahoo:srch"
 xsi:schemaLocation="urn:yahoo:srch
 http://api.search.yahoo.com/WebSearchService/V1/
WebSearchResponse.xsd"
 totalResultsAvailable="1426310"
 totalResultsReturned="10"

Web Services

[192]

 firstResultPosition="1">
 <Result>
 <Title>PEAR :: The PHP Extension and Application Repository</Title>
 <Summary>
 ... PEAR provides the above mentioned PHP components in the form
 of so called "Packages". If you would like to
 download PEAR
 packages, you can browse the complete ...
 </Summary>
 <Url>http://pear.php.net/</Url>
 <ClickUrl>http://pear.php.net/</ClickUrl>
 <ModificationDate>1136534400</ModificationDate>
 <MimeType>text/html</MimeType>
 </Result>
 <Result>
 <Title>PEAR :: Package :: PEAR</Title>
 <Summary>
 ... The PEAR package contains: * the PEAR installer, for creating,
 distributing ...
 </Summary>
 <Url>http://pear.php.net/package/PEAR</Url>
 <ClickUrl>http://pear.php.net/package/PEAR</ClickUrl>
 <ModificationDate>1135065600</ModificationDate>
 <MimeType>text/html</MimeType>
 <Cache>
 <Url>http://216.109.125.130/...1&.intl=us</Url>
 <Size>12366</Size>
 </Cache>
 </Result>
 <!-- More Result elements... -->
</ResultSet>
<!-- ws02.search.re2.yahoo.com compressed/chunked Sun Jan 8 04:27:41
PST 2006

 -->

This XML document contains information about all websites contained in the Yahoo
index that contain the term PEAR. For each of the items you will find a title, a short
summary, a URL, and cache information if Yahoo! offers a cached version of the page.

Now let's try to implement a PHP script that sends the same API call to the service
and extracts the title and summary from the result. For this we will follow the three
steps we described before and construct the request URL. For this task, we will use
the HTTP_Request package to execute the request:

Chapter 4

[193]

/**
 * Use HTTP_Request to make the HTTP connection
 */
require_once 'HTTP/Request.php';

// Create a new request object based on the API URL
$request = new HTTP_Request('http://api.search.yahoo.com/
WebSearchService/V1/webSearch');

// append the request parameters
$request->addQueryString('appid', 'packt-pear-book');
$request->addQueryString('query', 'PEAR');

// Send the HTTP request and capture the response
$request->sendRequest();

// Check, whether the request was successful
if ($request->getResponseCode() == 200)
{

 // Display the resulting XML document
 echo $request->getResponseBody();
}

After instantiating a new HTTP_Request object, we can append as many GET
parameters as we like and the class will automatically apply the URL encoding to
the arguments so your URLs are valid. Then we use the sendRequest() method to
actually send the request to the service and check the response code to determine
whether the request was successful. The getResponseBody() method gives us access
to the XML document returned from the service. As you can see, the HTTP_Request
package helped us executing the first two steps in only six lines of code and we can
now continue with parsing the XML document.

In Chapter 3 we got familiar with XML_Unserializer, a package that turns nearly
every XML document into a PHP data structure. Here we will use XML_Unserializer
to extract all available data from the service response to process it in our application.

/**
 * XML_Unserializer will parse the XML for us
 */
require_once 'XML/Unserializer.php';

$us = new XML_Unserializer();
// extract data from attributes

Web Services

[194]

$us->setOption(XML_UNSERIALIZER_OPTION_ATTRIBUTES_PARSE, true);

// create arrays
$us->setOption(XML_UNSERIALIZER_OPTION_COMPLEXTYPE, 'array');

// decode UTF-8 to ISO-8859-1
$us->setOption(XML_UNSERIALIZER_OPTION_ENCODING_SOURCE, 'UTF-8');
$us->setOption(XML_UNSERIALIZER_OPTION_ENCODING_TARGET, 'ISO-8859-1');

// If only one result is returned still create an indexed array
$us->setOption(XML_UNSERIALIZER_OPTION_FORCE_ENUM, array('Result'));

// parse the XML document
$result = $us->unserialize($request->getResponseBody());

// check whether an error occured
if (PEAR::isError($result))
{
 echo "An error occured: ";
 echo $result->getMessage();
}

// fetch the result
$result = $us->getUnserializedData();

After instantiating the XML_Unserializer object we need to set several options
to influence the parsing behaviors. First, we tell XML_Unserializer to process
attributes, as the root node of the result document contains some attributes that
might be important to us. Second, we decide that XML_Unserializer should create
arrays instead of objects from nested tags. As Yahoo! returns UTF-8 encoded data
and we prefer working with ISO-8859-1 encodings, we can use XML_Unserializer
to decode all data in attributes and text nodes to ISO-8859-1 encoding. Last, we
make sure that the <Result/> tag will always be stored in a numbered array no
matter how often it occurs. This will make sure that there is an array to iterate over,
irrespective of whether one or more pages have been found.

After setting all options, we pass the XML document to XML_Unserializer and let it
work its magic. The return value of unserialize() could signal an error if the XML
document contained any errors, so we check for a PEAR_Error prior to continuing.
If no error occurred, we fetch the unserialized data, which is now an array with the
following structure:

Array (
 [xmlns:xsi] => http://www.w3.org/2001/XMLSchema-instance
 [xmlns] => urn:yahoo:srch

Chapter 4

[195]

 [xsi:schemaLocation] => urn:yahoo:srch
 http://api.search.yahoo.com/WebSearchService/V1/
WebSearchResponse.xsd
 [totalResultsAvailable] => 1426310
 [totalResultsReturned] => 10
 [firstResultPosition] => 1
 [Result] => Array
 (
 [0] => Array
 (
 [Title] =>
 PEAR :: The PHP Extension and Application Repository
 [Summary] =>
 ... PEAR provides the above mentioned PHP components
 in the form of so called "Packages". If you would
 like to download PEAR packages, you can browse
 the complete ...
 [Url] => http://pear.php.net/
 [ClickUrl] => http://pear.php.net/
 [ModificationDate] => 1136534400
 [MimeType] => text/html
)
 [1] => Array
 (
 [Title] => PEAR :: Package :: PEAR
 [Summary] => ... The PEAR package contains:
 * the PEAR installer, for creating, distributing ...
 [Url] => http://pear.php.net/package/PEAR
 [ClickUrl] => http://pear.php.net/package/PEAR
 [ModificationDate] => 1135065600
 [MimeType] => text/html
 [Cache] => Array
 (
 [Url] => http://216.109.125.130/search/cache?appid=packt-
 pear-book&query=PEAR&ei=UTF-8&u=pear.php.net/
 package/PEAR&w=pear&d=aD-jIw0DMFBh&icp=1&.intl=us
 [Size] => 12366
)
)
 ...more results ...

)

This array contains the exact same information as the XML document and can easily
be traversed using a foreach loop:

// iterate over the result

Web Services

[196]

foreach ($result['Result'] as $item)
{
 printf("%s\n", $item['Title']);
 printf("%s\n\n", $item['Summary']);
}

If you run the complete script, it will search for the term PEAR in the Yahoo!
directory and display the results nicely formatted:

PEAR :: The PHP Extension and Application Repository
... PEAR provides the above mentioned PHP components in the form of so
called "Packages". If you would like to download PEAR packages, you
can browse the complete ...

PEAR :: Package :: PEAR
... The PEAR package contains: * the PEAR installer, for creating,
distributing ...

Pear - Wikipedia, the free encyclopedia
From Wikipedia, the free encyclopedia. Pear. Genus: Pyrus. L. Pears
are trees of the genus Pyrus and the fruit of that tree, edible in
some species. ... are important for edible fruit production, the
European Pear Pyrus communis cultivated mainly in Europe and North ...
also known as Asian Pear or Apple Pear), both grown mainly in ...

HTTP_Request and XML_Unserializer may be used in exactly the same fashion to
access nearly every REST-based web service. The only work left to you is to read the
documentation of the service so you know which values to expect.

In the first half of this chapter, we learned how to access XML-RPC and SOAP-based
web services as well as how to use some client implementations for proprietary web
services offered by PEAR. In the second part of this chapter, we will take a closer
look at offering services using several PEAR packages.

Offering a Web Service
Now that you have understood how to consume different types of web services with
PHP and PEAR you are probably interested in learning how to offer a web service.
So in the second part of this chapter we will use the XML_RPC package to offer a
simple service that can easily be consumed by different clients and programming
languages. Further we will offer the exact same functionality as a SOAP service and
will see how intuitive working with SOAP and WSDL can be when using PHP 5 and
Services_Webservice. Last we will offer a REST-based service using nothing more
than a web server, PHP, and XML_Serializer.

Chapter 4

[197]

Offering XML-RPC-Based Web Services
In the first part of this chapter we started our excursion into the field of web services
by building an XML-RPC client. So what better way to start off the second part
than by building our very first XML-RPC service that can be consumed by any
XML-RPC client?

Creating an XML-RPC service is also quite easy using the same XML_RPC package we
already used for building the client. This package not only provides functionality
to build request messages and parse response messages, but it also provides the
matching functionality needed to create a server:

First, the server needs to extract the XML document sent by the client from
the POST data of the HTTP Request.
Second, the XML document must be parsed so that the name of the called
function or method and the passed parameters can be extracted.
Somehow this method needs to be invoked and the return value of the
method must again be encoded in an XML-RPC-style XML document, which
will be sent back to the client.

Before we get into the details of how to build an XML-RPC service, we need to
implement some functionality that we will offer as a web service. As we will focus on
the XML-RPC implementation, our example function should be as easy as possible.
So let us go back to the record label we used in Chapter 3. All the classes required for
the record label are stored in one file named record-label.php:

/**
 * List of available artists and the records
 * they released
 *
 * This list would surely be replaced by a database
 * if the web service were a real-life application
 */
$records = array('Elvis Presley' =>
 array('That\'s All Right (Mama) & Blue Moon Of Kentucky',
 'Good Rockin\' Tonight',
),
 'Carl Perkins' => array(
 'Gone, Gone, Gone'
)
);

/**
 * get all records for an artist

•

•

•

Web Services

[198]

 *
 * @access public
 * @param string Name of the artist
 * @return array|boolean Array with all records, or false,
 * if the artist does not exist
 */
function getRecords($artist)
{
 // Replace this by a database query in real-life
 global $records;
 if (isset($records[$artist]))
 {
 return $records[$artist];
 }
 return false;
}

This is a very simple implementation of a function that returns all records that an
artist recorded. The artists and their recorded albums are stored in a global array for
the sake of simplicity. If you develop this application for an actual record label you
would surely store this information in a database so that label owners can easily edit
the data of the artists and their records. But for our example this code is sufficient. If
we call the getRecords() function and pass the name of an artist (say Elvis Presley),
we get the following result:

Array
(
 [0] => That's All Right (Mama) & Blue Moon Of Kentucky
 [1] => Good Rockin' Tonight
)

If we pass in the name of an artist that does not exist, the function will return false.

Now that we have finished implementing the business logic, we can start
implementing the XML-RPC server. The XML_RPC package provides an XML_RPC_
Server class, which does most of the work for us. This class will parse the XML
message sent by the client and convert it to an XML_RPC_Message object (actually
the same we created using the XML_RPC package on the client). It will then extract
the name of the function to be called from the message and will check whether we
registered a PHP function that matches this function name. If yes, it will call the PHP
function and pass the XML_RPC_Message as an argument to this function.

This means that the function we implement has to be able to work with an XML_RPC_
Message argument, but our getRecords() function expects a string to be passed.

Chapter 4

[199]

In order to create a new service we will have to wrap our business logic with a new
getRecordsService() function, which extracts the artist parameter from the XML_
RPC_Message and calls the getRecords() function with this string:

function getRecordsService($args)
{
 $artist = $args->getParam(0)->scalarval();
 $records = getRecords($artist);
}

After calling getRecords(), the $records variable should either contain an array
or return false if the artist is unknown. We could try just returning this value and
hope that the rest of the service will work automatically. But sadly enough, this will
not work. Instead, we have to encode the return value of the function as an XML_RPC_
Value and enclose this value in an XML_RPC_Response:

function getRecordsService($args)
{
 $artist = $args->getParam(0)->scalarval();
 $records = getRecords($artist);
 $val = XML_RPC_encode($records);
 $response = new XML_RPC_Response($val);
 return $response;
}

This works exactly like encoding the values on the client and creating a new
message. Now all that is left to do is create a new server and register this wrapper
function as an XML-RPC function. Here is the code required for the complete server:

/**
 * Include the actual business logic
 */
require_once 'record-label.php';

/**
 * Include the XML-RPC server class
 */
require_once 'XML/RPC/Server.php';

/**
 * XML-RPC wrapper for this business logic
 *
 * @access public
 * @param XML_RPC_Message The message send by the client
 * @return XML_RPC_Response The encoded server response

Web Services

[200]

 */
function getRecordsService($args)
{
 $artist = $args->getParam(0)->scalarval();
 $records = getRecords($artist);
 $val = XML_RPC_encode($records);
 $response = new XML_RPC_Response($val);
 return $response;
}

// map XML-RPC method names to PHP function
$map = array(
 'label.getRecords' => array(
 'function' => 'getRecordsService'
)
);

// create and start the service
$server = new XML_RPC_Server($map);

The $map array that is passed to the constructor of the XML_RPC_Server class is used
to map the exposed RPC methods to the matching PHP function. The server will pass
the XML_RPC_Message received as the sole argument to this PHP function.

After finishing our first server, we want to test whether it works as expected. But if
you open the server URL in your browser, you will see the following error message:

faultCode 105 faultString XML error: Invalid document end at line 1

If you take a look at the source code of the page, you will see that this is actually an
XML document, which has been treated as HTML by your browser:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
<fault>
 <value>
 <struct>
 <member>
 <name>faultCode</name>
 <value><int>105</int></value>
 </member>
 <member>
 <name>faultString</name>
 <value><string>XML error: Invalid document end at line 1
 </string></value>
 </member>

Chapter 4

[201]

 </struct>
 </value>
</fault>
</methodResponse>

This XML document signals that the XML-RPC server wants to send an error
message to the client because it is not intended to be used by a browser, but an XML-
RPC client. So to test our new service we will have to implement a client for it. As we
have learned before, this is easy using the XML_RPC package:

require_once 'XML/RPC.php';

$client = new XML_RPC_Client('/record-label.php', 'localhost');

$params = array(
 new XML_RPC_Value('Elvis Presley', 'string')
);
$message = new XML_RPC_Message('label.getRecords', $params);

$response = $client->send($message);

if ($response->faultCode())
{
 echo "Could not use the XML-RPC service.\n";
 echo $response->faultString();
 exit();
}

$value = $response->value();
$records = XML_RPC_decode($value);

print_r($records);

Make sure that you adjusted the path and the hostname in the constructor of the
XML_RPC_Client so it matches your local configuration. Now if you run this script, it
will call the getRecords() method and pass Elvis Presley as a parameter to it. The
script should now output:

Array
(
 [0] => That's All Right (Mama) & Blue Moon Of Kentucky
 [1] => Good Rockin' Tonight
)

Web Services

[202]

Error Management
If you try to replace the method you are calling with any method you did not
implement, the service will automatically trigger an error, which will be caught by
the client and can be checked via the faultCode() method. So if we change one line
in the client script to:

$message = new XML_RPC_Message('label.getArtists', $params);

The output of the script is:

Could not use the XML-RPC service. Unknown method

As we did not implement the method, the service will signal the error automatically
without any intervention needed by the developer. But of course the user still could
make some mistake while using the client, for example if there is a typo in the name
of the artist that he or she passes in:

$params = array(
 new XML_RPC_Value('Elvis Prely', 'string')
);
$message = new XML_RPC_Message('label.getRecords', $params);

If you run this script, the output is:

0

This happens because the original getRecords() method returns false when
receiving an unknown artist and, as PHP is not type-safe, this results in the return
value 0 on the client. Of course it would be better to signal an error in the XML-RPC
server, which can be caught by the client as well. Signaling an error can be done by
using a different signature for the XML_RPC_Response constructor. Instead of passing
in an XML_RPC_Value, we pass 0 as the first parameter, followed by a fault code and
a textual error message:

function getRecordsService($args)
{
 $artist = $args->getParam(0)->scalarval();
 $records = getRecords($artist);
 if ($records === false)
 {
 $response = new XML_RPC_Response(0, 50,
 'The artist "'.$artist.'" is not in our database.');
 } else
 {
 $val = XML_RPC_encode($records);
 $response = new XML_RPC_Response($val);
 }

Chapter 4

[203]

 return $response;
}

If we run the client script again after we have made this change, it will now output:

Could not use the XML-RPC service. The artist "Elvis Prely" is not in
our database.

This will tell the client a lot more about the problem that occurred than just returning
0. Now there is only one problem left. Imagine a client calling the method without
any parameters at all:

$message = new XML_RPC_Message('label.getRecords');

This will result in the following output:

Could not use the XML-RPC service. Invalid return payload: enable
debugging to examine incoming payload

If we enable debugging in the client using $client->setDebug(1); we will see the
source of the problem:

Fatal error: Call to undefined method XML_RPC_Response::
scalarval() in /var/www/record-label.php on line 21

We tried to call the scalarval() method on an XML_RPC_Value that is not present in
the actual request. We could easily solve this by checking whether a parameter has
been passed in and signaling a fault otherwise, but there is an easier way to automate
this. When creating the dispatch map for the XML-RPC service, besides defining a
PHP function for each method of the service, it is also possible to specify the method
signature for this method:

$map = array('label.getRecords' =>
 array(
 'function' => 'getRecordsService',
 'signature' =>
 array(
 array('array', 'string'),
),
 'docstring' => 'Get all records of an artist.'
)
);

The signature is an array as it is possible to overload the method and use it with
different signatures. For each permutation you have to specify the return type (in this
case an array) and the parameters the method accepts. As our method only accepts a
string, we only define one method signature. Now if you run the client again, there
will be a new error message, which is a lot more useful:

Web Services

[204]

Could not use the XML-RPC service. Incorrect parameters passed to
method: Signature permits 1 parameters but the request had 0

You probably already noticed the additional entry docstring that we added to the
dispatch map in the last example. This has been added to showcase another feature
of the XML_RPC_Server class—it automatically adds to each XML-RPC service
several methods that provide introspection features. This allows you to get a list of
all supported methods of the service via any XML-RPC client:

require_once 'XML/RPC.php';

$client = new XML_RPC_Client('/record-label.php', 'localhost');

$message = new XML_RPC_Message('system.listMethods');

$response = $client->send($message);

$value = $response->value();
$methods = XML_RPC_decode($value);

print_r($methods);

If you run this script, it will display a list of all methods offered by the service:

Array
(
 [0] => label.getRecords
 [1] => system.listMethods
 [2] => system.methodHelp
 [3] => system.methodSignature
)

In the same way you can also get more information about one of the supported
methods, which is why we added the docstring property to our dispatch map:

$message = new XML_RPC_Message('system.methodHelp',
 array(new XML_RPC_Value(
 'label.getRecords')));
$response = $client->send($message);

$value = $response->value();
$help = XML_RPC_decode($value);

echo $help;

Chapter 4

[205]

Running this script will display the help text we added for the label.getRecords()
method. Whenever you implement an XML-RPC based service, you should always
add this information to the dispatch map to make it easier for service consumers to
use your service.

Now you know everything that you need to offer your own XML-RPC-based web
service with the XML_RPC package and you can start offering your services to a
variety of users, applications, and programming languages.

Offering SOAP-Based Web Services
Since we have successfully offered an XML-RPC based service, we will now take the
next step and offer a web service based on SOAP. Prior to PHP 5 this was extremely
hard, but since version 5, PHP offers a new SOAP extension that does most of the
work you need. We have already used this extension previously in this chapter, as
Services_Google is only a wrapper around ext/soap that adds some convenience
to it.

As the SOAP extension is already provided by PHP, you may wonder why a PHP
package is still required. Well, one of the biggest drawbacks of the current SOAP
extension is that it is not able to create WSDL documents from existing PHP code.
WSDL is short for Web Service Description Language and is an XML format used to
describe SOAP-based web services. A WSDL document contains information about
the methods a web service provides and the signatures of these methods as well as
information about the namespace that should be used and where to find the actual
service. Writing WSDL documents manually is quite painful and error prone, as they
contain a lot of information that is not very intuitive to guess and are often extremely
long. For example, the WSDL document describing the Google web service is over
200 lines long, although Google only offers three methods in its current service.

All the information contained in the WSDL document could easily be extracted
from the PHP code or the documentation of the PHP code and writing it by hand
is often duplicate work. Most modern programming languages already support
automatic WSDL generation and with the Services_Webservice package, PEAR
finally brings this functionality to PHP. Although the package is relatively new, it
makes implementing web services a piece of cake. Services_Webservice aims at
automating web service generation and takes a driver-based approach, so it will
eventually be possible to support not only SOAP, but also XML-RPC and possibly
even REST. Currently only SOAP is supported.

Using Services_Webservice, you do not have to worry about the internals of SOAP
at all; you only implement the business logic and pass this business logic to the
package and it will automatically create the web service for you. As SOAP is mostly
used in conjunction with object-oriented languages and PEAR is mainly OO-code as

Web Services

[206]

well, Services_Webservice expects you to wrap the business logic in classes. That
means we have to start with a new implementation of the business logic and once
again, we will be using our record label as an example. We can borrow a lot of code
from the XML-RPC example, and wrap it all in one RecordLabel class, which should
be saved in a file called RecordLabel.php:

/**
 * Offers various methods to access
 * the data of our record label.
 */
class RecordLabel
{
 /**
 * All our records.
 *
 * Again, in real-life we would fetch the data
 * from a database.
 */
 private $records =
 array(
 'Elvis Presley' =>
 array(
 'That\'s All Right (Mama) & Blue Moon Of Kentucky',
 'Good Rockin\' Tonight',
),
 'Carl Perkins' => array(
 'Gone, Gone, Gone'
)
);

 /**
 * Get all records of an artist
 *
 * @param string
 * @return string[]
 */
 public function getRecords($artist)
 {
 $result = array();
 if (isset($this->records[$artist]))
 {
 $result = $this->records[$artist];
 }
 return $result;

Chapter 4

[207]

 }

 /**
 * Get all artists we have under contract
 *
 * @return string[]
 */
 public function getArtists()
 {
 return array_keys($this->records);
 }
}

Again, we store the data in a simple array in a private property for the sake of
simplicity. Our new class RecordLabel provides two methods, getArtists() and
getRecords(). Both of them are quite self-explanatory. We also added PHPDoc
comments to all the methods and the class itself, because those are evaluated by the
Services_Webservice package. If you take a closer look, you will see a comment
that will probably seem a bit strange to you. Both methods return a simple PHP
array, but the doc block states string[] as the return type. This is because SOAP
is intended to allow communication between various different programming
languages and while PHP uses loose typing and an array in PHP could contain
strings, integers, objects, and even arrays, this is not possible in typed languages
like Java, where an array may only contain values of the same type. If you create an
array in Java, you will have to tell the compiler what types the array will contain.
In order to allow communication between these languages, SOAP establishes rules
that must be fulfilled by all SOAP implementations and so the PHP implementation
of getRecords() and getArtists() agrees that they will return arrays that only
contain strings. The syntax of the doc comment is borrowed from Java, where you
also just append [] behind a type to create an array of this type.

Apart from that, the code looks exactly like any standard PHP 5 OO code you are
using everyday; there is no evidence of web services anywhere in it. Nevertheless, it
can be used to create a new web service in less than ten lines of code, as the following
example will prove:

// Include the business logic
require_once 'RecordLabel.php';
// Include the package
require_once 'Services/Webservice.php';

// Specify SOAP options
$options = array(
 'uri' => 'http://www.my-record-label.com',

Web Services

[208]

 'encoding' => SOAP_ENCODED
);

// Create a new webservice
$service = Services_Webservice::factory('SOAP', 'RecordLabel',
 'http://www.my-record-label.com',
 $options);
$service->handle();

After including the business logic and the Services_Webservice class, all we need
to do is specify two SOAP options:

The namespace that uniquely identifies our web service
The encoding we want to use for the web service

After that, we use the factory method of the Services_Webservice class to create a
new web service by passing the following arguments:

Type of the web service to create (currently only SOAP is supported)
Name of the class that provides the methods (can also be an instance of
this class)
Namespace to use
Array containing special options for the web service

The factory method will then return a new instance of Services_Webservice_SOAP,
which can easily be started by calling the handle() method. If you open this script
in your browser, it will automatically generate a help page that describes your web
service, as the following image shows.

•

•

•

•

•

•

Chapter 4

[209]

Services_Webservice automatically extracted the information from the doc
blocks to display information about the web service itself (extracted from the
class-level docblock) and each of the methods offered by the service. The help
page also includes two links: one to the matching WSDL document and one to the
matching DISCO document. A DISCO document is an XML document that contains
information on where to find the WSDL documents that describe the web service.

Services_Webservice generates both these documents automatically and you can
access them by appending ?wsdl or ?DISCO to the URL of your script. Now your
web service can already easily be consumed by any client that supports SOAP-based
web services. Of course we want to test it before making it public, but as Services_
Webservice generates a WSDL document, this is extremely easy. Here is a test script
that uses the SOAP extension of PHP 5:

$client = new SoapClient('http://localhost/record-label.php?wsdl');

$artists = $client->getArtists();
print_r($artists);

Web Services

[210]

The new SOAP extension is able to generate PHP proxy objects for a SOAP web
service directly from any WSDL document. To improve the performance of the proxy
generation, the WSDL is even cached after it has been parsed for the first time. Using
the magic __call() overloading, you can call any method on the proxy that you
implemented in the class used on the server. The SOAP extension will intercept the
method call, encode it in XML, and send it to the server, which will do the actual
method call. So if you run this script, it will output as expected:

Array
(
 [0] => Elvis Presley
 [1] => Carl Perkins
)

You can call the second method that has been implemented in the same way:

$client = new SoapClient('http://localhost/record-label.php?wsdl');

$artists = $client->getArtists();
foreach ($artists as $artist)
{
 echo "$artist recorded:\n";
 $records = $client->getRecords($artist);
 foreach ($records as $record)
 {
 echo "...$record\n";
 }
}

In your scripts you do not need to worry about SOAP at all; just implement the logic
on the server as if it were used locally and on the client you can access the data as if
you were working with the RecordLabel object.

Error Management
Up to now we have not worried about signaling errors from the server, but as you
will see, this is also extremely easy. Suppose we want to signal an error if someone
tries to fetch all records by an artist that is not available in the database. All you need
to do is change the business logic to throw an exception in this case:

 /**
 * Get all records of an artist
 *
 * @param string
 * @return string[]

Chapter 4

[211]

 */
 public function getRecords($artist)
 {
 if (isset($this->records[$artist]))
 {
 $result = $this->records[$artist];
 return $result;
 }
 else
 {
 throw new SoapFault(50,
 'The artist "'.$artist.'" is not in our database.');
 }
 }

The SoapFault exception will be transported to the client, where you can easily
catch the error:

try
{
 $records = $client->getRecords('Foo');
}
catch (SoapFault $f)
{
 echo "An error occured.\n";
 echo $f;
}

Besides extracting documentation and signatures, Services_Webservice is able to
use further information from the doc blocks. If the use of a method is discouraged
because there is a newer method that should be used instead, you just have to add
@deprecated to the doc block:

 /**
 * Get all of Elvis' records.
 *
 * @return string[]
 * @deprecated Use getRecords() instead
 */
 public function getRecordsByElvis()
 {
 return $this->getRecords('Elvis Presley');
 }

This method will be marked as deprecated in the generated help page as well.

Web Services

[212]

Last, it is also possible to hide some methods from the web service; this enables you
to implement some helper methods that can only be called from the local server:

 /**
 * This is a helper method and not visible by the web service.
 *
 * @webservice.hidden
 */
 public function doSomeHelperStuff()
 {
 // no code here, just a dummy method
 }

With all these features of the new SOAP extension in PHP 5 and the Services_
Webservice package, using SOAP-based web services is even easier than using
XML-RPC.

Offering REST-Based Services using
XML_Serializer
Now that you have used XML-RPC and SOAP to build standard web services to
make your business logic accessible by anybody with an internet connection, you
might wonder why you needed those standards in the first place. SOAP is extremely
complex and leads to verbose XML, which in turn leads to more traffic and lower
response rates of your service. A lot of companies have been asking these questions
lately and REST has become more and more popular. So if you do not need the
advantages of SOAP like interoperability and auto-generation of clients using WSDL,
REST might be the best solution for your company.

REST makes use of the proven technologies HTTP and XML without adding a
complicated syntax. Instead of encoding your request parameters in a complex XML
document, it uses a feature that the HTTP standard already provides—parameters
encoded in the URL. Calling a remote method in XML-RPC (which still is a lot
simpler than SOAP) requires the following code:

<?xml version="1.0" encoding="UTF-8"?>
<methodCall>
 <methodName>label.getRecords</methodName>
 <params>
 <param>
 <value><string>Elvis Presley</string></value>
 </param>
 </params>
</methodCall>

Chapter 4

[213]

Using REST, the same method call would just be represented by a URL similar to:

http://www.example.com/rest/label/getRecords?artist=Elvis+Presley

I have been using the term similar here because REST only describes the basic
principle and does not enforce any strict rules on your web service. Any of the
following URLs could be used to describe exactly the same method call:

http://www.example.com/index.php?method=label.getRecords&artist=El
vis+Presley
http://www.example.com/label/getRecords/Elvis+Presley

How the method call is encoded in the URL is left to the provider of the service.

Both method calls contain nearly the same information:

The method to be called (label.getRecords or /label/getRecords)
The parameter to be passed to the method call (Elvis Presley)

The only thing different is that the XML-RPC version transports type information
for the parameter value, whereas the REST version only transports the value itself.
However, since dynamically typed languages are getting increasingly popular this is
not really a disadvantage.

Encoding the method call in a typical REST fashion has been a lot easier than using
XML-RPC. Let's take a look at the responses. The response for the above XML-RPC
call would be something along the lines of:

<?xml version="1.0" encoding="UTF-8"?>
<methodResponse>
 <params>
 <param>
 <value>
 <array>
 <data>
 <value>
 <string>
 That's All Right (Mama) & Blue Moon Of Kentucky
 </string>
 </value>
 <value><string>Good Rockin' Tonight</string></value>
 </data>
 </array>
 </value>
 </param>
 </params>
</methodResponse>

•
•

Web Services

[214]

Again, a lot of XML code needs to be created, sent over the network, and parsed by
the client. And all that just for transporting a simple numbered array containing two
strings. Now let us take a look at the same response to the same method call, but this
time using REST:

<?xml version="1.0" encoding="UTF-8"?>
<getRecordsResult>
 <record>That's All Right (Mama) &
 Blue Moon Of Kentucky</record>
 <record>Good Rockin' Tonight</record>
</getRecordsResult>

While again the response only contains the raw data without any type information it
still carries the same information, saves bandwidth and resources, and is even easier
to read and understand. As the XML document does not have to follow any rules
you could as well just deliver this document:

<?xml version="1.0" encoding="UTF-8"?>
<label:records xmlns:label="http://www.example.com/my/label">
 <label:record title="That's All Right (Mama) & Blue Moon
Of Kentucky"/>
 <label:record title="Good Rockin' Tonight"/>
</getRecordsResult>

The only rules for REST results are that they are valid XML and that your users
understand what your service is sending back as a response. Of course, you need
to document the XML schema you are using so that your customers know how to
interpret the returned XML.

Our Own REST Service
Let's try to implement our own REST service! And what better example than the
record label that has accompanied us during the last two chapters. For our first REST
service, we will be using exactly the same business logic we used in the Services_
Webservice example. In case you have forgotten which methods the RecordLabel
class provides and what their signatures looked like, here is a short reminder:

class RecordLabel
{
 public function getRecords($artist);
 public function getArtists()
}

The implementation of the class has been left out in this code snippet, as we have
already used it in the last example and it is irrelevant for the REST web service.
As the business logic provides two methods, our service should provide these two
methods as well:

Chapter 4

[215]

getArtists() will return all artists our record label has contracted.
getRecords(string $artist) will return all records an artist has recorded.

Before we can start we need to define the URL scheme the clients have to use to
invoke these methods on our service. To avoid the annoyances mod_rewrite might
bring into this, the easiest way is to encode the method name as a URL parameter
so the requests can always use the same base URL. Other REST-based services (like
Yahoo!) include the method name parameter as a part of the path and use Apache's
mod_rewrite module to route the requests to the script that processes all requests.
This way, there is no need to expose that you are using PHP for your web service.

All other parameters that the methods might accept will also be encoded in standard
URL parameters. So typical URLs to access our service might be:

http://www.your-domain.com/REST/index.php?m=getArtists
http://www.your-domain.com/REST/index.php?m=getRecords&artist=
 Elvis+Presley

We will now implement a new class that can be reached at
http://www.your-domain.com/REST/index.php and which will evaluate all
parameters passed to it. To handle these requests, the service will require at least the
following data:

The object that provides the business logic
The name of the request parameter that contains the name of the method that
should be invoked.

To make sure that this information is always available, we make it part of the
constructor of our service:

/**
 * Generic REST server
 */
class REST_Server
{
 /**
 * object, that provides the business logic
 */
 private $handler;

 /**
 * name of the request parameter that contains the method name
 */
 private $methodVar;

 /**

•

•

•

•

Web Services

[216]

 * Create new REST server
 *
 * @param object Object that provides the business logic
 * @param string Name of the request variable
 * that contains the method to call
 */
 public function __construct($handler, $methodVar = 'm')
 {
 $this->handler = $handler;
 $this->methodVar = $methodVar;
 }
}

If we create a new service, it will not start automatically, so we have to add a new
service method to handle the following tasks:

1. Check whether the client supplied a method to be invoked. If not, signal
an error.

2. Check whether the business logic provides the method the client requested. If
not, signal an error.

3. Check whether the client provided all arguments required to invoke the
requested method. If not, signal an error.

4. Invoke the requested method. If it fails, signal an error. Otherwise create an
XML representation of the result and send it to the client.

While the first task seems easy, you may wonder how tasks number two and three
will be implemented. PHP 5 provides a new feature called reflection, which enables
you to introspect classes, methods, and functions. In case of a generic REST service,
we will be using reflection to check whether the business logic object provides
the method the client wanted to call. Furthermore, reflection allows us to get the
total number and names of arguments the method expects. This way, we can map
the parameters sent with the HTTP request to the parameters of the method call.
Using the reflection API is easy; the following code will check whether the passed
object provides a method called getRecords() and will display the names of the
parameters this method expects:

$label = new RecordLabel();

// Create a reflection object that is able to
// provide information about the object we passed
$reflect = new ReflectionObject($label);
try
{
 // get an object that provides information

Chapter 4

[217]

 // about the getRecords() method
 $method = $reflect->getMethod('getRecords');
}
catch (ReflectionException $e)
{
 echo "The method 'getRecords' does not exist.";
 exit();
}

echo "The method 'getRecords' exists.\n";
echo "It accepts ".$method->getNumberOfParameters()." parameters\n";

// get information about all parameters that
// have to be passed to this method
$parameters = $method->getParameters();

foreach ($parameters as $parameter)
{
 $name = $parameter->getName();
 echo " - $name\n";
}

If you run this script, it will output:

The method 'getRecords' exists.
It accepts 1 parameters
 - artist

So the reflection API allows you to easily get information about methods at run
time for any object you are using. We will use this feature to map the HTTP-request
parameters to the method parameters in our generic REST service:

 /**
 * Start the REST service
 */
 public function service()
 {
 // We will send XML later
 header('Content-Type: text/xml');

 // get the name of the method that should be called
 if (!isset($_GET[$this->methodVar]))
 {
 $this->sendFault(1, 'No method requested.');
 }

Web Services

[218]

 $method = $_GET[$this->methodVar];

 // Check whether the method exists
 $reflect = new ReflectionObject($this->handler);
 try
 {
 $method = $reflect->getMethod($method);
 }
 catch (ReflectionException $e)
 {
 $this->sendFault(2, $e->getMessage());
 }

 // Check whether all parameters of the method
 // have been transmitted
 $parameters = $method->getParameters();
 $values = array();
 foreach ($parameters as $parameter)
 {
 $name = $parameter->getName();
 if (isset($_GET[$name]))
 {
 $values[] = $_GET[$name];
 continue;
 }
 if ($parameter->isDefaultValueAvailable())
 {
 $values[] = $parameter->getDefaultValue();
 continue;
 }
 $this->sendFault(3, 'Missing parameter ' . $name . '.');
 }

 // Call the actual method and send result to the client
 try
 {
 // This will work from PHP 5.1:
 // $method->invokeArgs($this->handler, $values);
 $result = call_user_func_array(
 array($this->handler, $method->getName()), $values);
 $this->sendResult($method->getName(), $result);
 }
 catch (Exception $e)
 {

Chapter 4

[219]

 $this->sendFault($e->getCode(), $e->getMessage());
 }
 }

This short method will handle almost all of the above mentioned tasks our service
has to fulfill. First, it sends a Content-Type header, as the REST service will always
deliver XML markup. Then it checks whether a method name has been sent with the
request and whether the business logic object provides the specified method. If any
on these checks fails, it will use the sendFault() method to signal an error. We will
deal with the implementation of this method in few seconds. If the method exists, it
will fetch the list of parameters it accepts and iterate over them. For each parameter it
will either extract the parameter value from the request or use the default value. If a
value has not been passed in the request and the implementation of the method does
not provide a default value, another error will be signaled. The extracted values will
be stored in the $values array. If all method parameters have successfully initialized,
call_user_func_array() will be used to invoke the method. Until PHP 5.1 the
reflection API did not provide the invokeArgs() method, which allows you to invoke
any method by passing an array with the method arguments.

The result of the called method will be captured and sent as XML using the
sendResult() method. In this code snippet, we already have used two methods
without implementing them. So before we can test the service, we need to implement
them. Here is the code required for the sendFault() implementation:

 /**
 * Signal an error
 *
 * @param integer error code
 * @param string error message
 */
 protected function sendFault($faultCode, $faultString)
 {
 $serializer = new XML_Serializer();
 $serializer->setOption(XML_SERIALIZER_OPTION_ROOT_NAME,
 'fault');
 $serializer->serialize(array('faultCode' => $faultCode,
 'faultString' => $faultString));
 echo $serializer->getSerializedData();
 exit();
 }

If you have carefully read the chapter on XML processing with PEAR, you are
already familiar with the package we are using here. XML_Serializer is able to
create an XML document from just about any data. In this case, we are passing an
array containing the fault code and the description of the error. These four lines of
code will produce the following XML document:

Web Services

[220]

<fault>
 <faultCode>1</faultCode>
 <faultString>No method requested.</faultString>
</fault>

If a client receives this XML document, it will easily recognize it as an error and
process it accordingly. Our sendFault() method may now be called with any fault
code and fault string to signal any kind of error to the client. The implementation of
the sendResult() method is very similar to the sendFault() method:

 /**
 * Send the result as XML to the client
 *
 * @param string name of the method that had been called
 * @param mixed result of the call to the business logic
 */
 protected function sendResult($methodName, $result)
 {
 $matches = array();
 if (preg_match('/^get([a-z]+)s$/i', $methodName, $matches))
 {
 $defaultTag = strtolower($matches[1]);
 }
 else
 {
 $defaultTag = 'item';
 }

 $serializer = new XML_Serializer();
 $serializer->setOption(XML_SERIALIZER_OPTION_ROOT_NAME,
 $methodName.'Result');
 $serializer->setOption(XML_SERIALIZER_OPTION_DEFAULT_TAG,
 $defaultTag);
 $serializer->serialize($result);
 echo $serializer->getSerializedData();
 exit();
 }

However, it is a bit more intelligent as it uses the method name as the root tag and
if the method starts with get*, it will use the rest of the name as a default tag for
numbered arrays.

Chapter 4

[221]

So if we call our new service with the example URLs mentioned above, we will
receive the following XML documents from our server:

<getArtistsResult>
 <artist>Elvis Presley</artist>
 <artist>Carl Perkins</artist>
</getArtistsResult>

<getRecordsResult>
 <record>That's All Right (Mama) & Blue Moon Of Kentucky
 </record>
 <record>Good Rockin' Tonight</record>
</getRecordsResult>

In the business logic classes, we can signal errors by throwing an exception, which is
the standard way in object-oriented development. To add error management to the
getRecords() method, we only need to modify the method a little:

 /**
 * Get all records of an artist
 *
 * @param string
 * @return string[]
 */
 public function getRecords($artist)
 {
 if (isset($this->records[$artist]))
 {
 $result = $this->records[$artist];
 return $result;
 }
 throw new Exception('The artist "'.$artist.
 '" is not in our database.', 50);
 }

This exception will be automatically caught by the REST_Server class and
transformed into an XML document, which will be sent to the client:

<fault>
 <faultCode>50</faultCode>
 <faultString>
 The artist "P.Diddy" is not in our database.
 </faultString>
</fault>

Web Services

[222]

If you add new methods to the business logic, they will instantly become available
through your new REST service. You may just as well pass in a completely different
object that encapsulates business logic and you will be able to access it using the
REST server. And as you are already quite familiar with the XML_Serializer
package, you can easily tweak the format of the XML that is delivered.

Implementing a client for our newly created REST service will be left as an exercise.

Summary
In this chapter, we have worked with various web services. We learned about the
concepts behind XML-RPC and SOAP as well as the principle of keeping it simple
that REST-based services follow. This chapter covered consuming those services as
well as offering your own services to the public.

We have used the XML_RPC package to access the web service offered by the PEAR
website, which allows you to retrieve information about the offered packages.
We have also used Services_Google, which acts as a wrapper around PHP's
SOAP extension to access the Google search API. By using Services_Amazon and
Services_Technorati, we accessed two REST-based services without having to
worry about the transmitted XML documents. Using the Yahoo API as an example
we also experienced how HTTP_Request and XML_Unserializer can be combined to
consume any REST-based web-service, regardless of the returned XML format.

The second half of the chapter was devoted to offering web services. We learned how
to use the XML_RPC package to offer an XML-RPC-based service that also allowed
introspection. Using Services_Webservice, we automated the generation of a
SOAP-based web service including WSDL generation from any class that needs to be
exposed as a service. Last, we built a generic REST server that can be used to build a
new service on top of any class that offers business logic.

PEAR's web service category is still growing and offers more and more clients for
different web services. All of them follow one or more of the approaches showcased
in this chapter.

Working with Dates
This chapter introduces PEAR's Date and TimeDate and Time section. It covers the packages Date,
Date_Holidays, and and Calendar. You will see what help they offer and learn how to
use them to solve date- and time-related problems. You can visit the Date and Time
section online at http://pear.php.net/packages.php?catpid=8&catname=Date+
and+Time.

After reading the chapter, you will be able to use these packages as a replacement for
PHP's native date and time functions. Knowledge of these three libraries will help
you to program robust date-related applications.

Working with the Date Package
You may ask why you should use PEAR::Date instead of PHP's native Unix
timestamp-based date and time functions. In fact, using PEAR::Date means a loss
of performance because it is coded in PHP and not C. Additionally, you have to
understand a new API and learn how to use it. But there are some advantages, the
main one being that PEAR::Date is not based on Unix timestamps and does not
suffer from their deficits.

A timestamp is used to assign a value in a certain format to a point in time. Unix
timestamps count the seconds from 01/01/1970 00:00h GMT and today's computers
store it in a signed 32-bit integer number, which means it can hold values from minus
2,147,483,648 to 2,147,483,648. This means 01/01/1970 00:00h GMT is represented by
an integer value of 0 (zero). 01/01/1970 00:01h GMT would therefore be represented
by an integer value of 60. The problem with Unix timestamps is that exactly on
January 19, 2038, at 7 seconds past 3:14 AM GMT, the maximum possible integer
value is reached. Imagine this as an event similar to the Y2K problem. One second
later the counter will carry over and start from – 2,147,483,648. At this point many
32-bit programs all over the world will fail. Some people may say that computers
in 2038 will be using at least 64-bit integers. That would be enough to store time

Working with Dates

[224]

representations that go far beyond the age of the universe. Certainly, that will be true
for most applications. But what about legacy systems or programs that have to be
downwards compatible to 32-bit software?

You will not suffer from the timestamp problem if you use PEAR::Date.
Furthermore, PEAR::Date is object oriented, provides lots of helpful methods, and is
timezone-aware. Also for instance a timespan of 1 hour does not have to be stated as
3600 seconds but can be represented as a Date_Span object like this:

$timespan = new Date_Span('1 hour')

PEAR::Date provides lots of really nice features and even if you develop software
you do not plan to use in 2038 or later the package is definitely worth a try.

Date
The following sections will teach you how to create, query, and manipulate Date
objects. You will also see how to compare different objects to each other and how to
print the date and time these objects represent in whatever format a programmer's
heart desires. Your journey starts now.

Creating a Date Object
When working with PEAR::Date, the first thing you need to know is how to create
an object of the Date class. The constructor expects one optional parameter. If none
is passed the object will be initialized with the current date/time. If you pass a
parameter the object will be initialized with the specified time. Accepted formats for
the parameter are ISO 8601, Unix timestamp, or another Date object:

require_once 'Date.php';

$now = new Date();

$iso8601 = new Date('2005-12-24 12:00:00');
$mysqlTS = new Date('20051224120000');
$unixTS = new Date(mktime(12, 0, 0, 12, 24, 2005));
$dateObj = new Date($unixTS);

Once an object has been created you can use setDate() to modify its properties.
Regardless of whether you use the constructor or setDate(), the object will be
initialized with the system's default timezone.

Chapter 5

[225]

Querying Information
Date objects have several methods that allow you to gather detailed information
about their properties. For instance, there is a set of methods that provide
information about an object's date and time properties, namely getYear(),
getMonth(), getDay(), getHour(), getMinute(), and getSecond().

If you want to access all the information by calling a single method you could use
getTime() to retrieve an Unix timestamp or getDate() to get the date/time as a
formatted string. The latter expects an optional parameter that defines the method's
output format. The next table shows available output format constants and what the
output would look like if you had the following object: $date = new Date('2005-12-
24 09:30:00').

Constant Output format
DATE_FORMAT_ISO 2005-12-24 09:30:00 (YYYY-MM-DD hh:mm:ss)
DATE_FORMAT_ISO_BASIC 20051224T093000Z (YYYYMMDDThhmmssZ)
DATE_FORMAT_ISO_EXTENDED 2005-12-24T09:30:00Z (YYYY-MM-DDThh:mm:ssZ)
DATE_FORMAT_ISO_EXTENDED_
MICROTIME

2005-12-24T09:30:0.000000Z
(YYYY-MM-DDThh:mm:ss.s*Z)

DATE_FORMAT_TIMESTAMP 20051224093000 (YYYYMMDDhhmmss)
DATE_FORMAT_UNIXTIME 1135413000 (integer; seconds since

01/01/1970 00:00h GMT))

There is another set of methods that helps you find out information closely related to the
date/time properties of a Date object. A description for some of these methods and
the expected example output for the aforementioned Date object can be found in the
following table:

Method Description Result
(2005-12-24 09:30:00)

getDayName($abbr) Returns the day's name. One optional
parameter decides if it is abbreviated
(false) or not (true)—default is false.

Saturday (string)

getDayOfWeek() Returns the day of the week as an integer
for the object's date: Sunday = 0, Monday
= 1, ..., Saturday = 6

6 (integer)

getDaysInMonth() Returns the number of days in the month
for the object's date.

31 (integer)

getQuarterOfYear() Returns the quarter of the year for the
object's date.

4 (integer)

Working with Dates

[226]

Method Description Result
(2005-12-24 09:30:00)

getWeekOfYear() Returns the number of the week for the
object's date.

51 (integer)

getWeeksInMonth() Returns the number of weeks in the
month for the object's date.

5 (integer)

isLeapYear() Determines whether the represented year
is a leap year or not.

false (boolean)

isPast() Determines whether the object's date is
in the past.

true (boolean)

isFuture() Determines whether the object's date is
in the future.

false (boolean)

Having a Date object you can easily find out what comes next or what was before.
This can be done using the methods getNextDay() or getPrevDay(). In the same
way you can also find the next or previous weekday relative to your current Date
object. See the following listing for an example:

$date = new Date('2005-12-24 09:30:00');

$prev = $date->getPrevDay(); // 2005-12-23 09:30:00
$prevWd = $date->getPrevWeekday(); // 2005-12-23 09:30:00

$next = $date->getNextDay(); // 2005-12-25 09:30:00
$nextWd = $date->getNextWeekday(); // 2005-12-26 09:30:00

Each method returns a new Date object with the appropriate date information. The
time information remains unchanged.

Do you need more date-related information?

If you still need to find out more information about any date
or time, take a look at the Date_Calc class that ships with
the PEAR::Date package. It is frequently used internally by
the Date class and provides tons of helpful methods that you
could look at if the Date class does not satisfy your needs.

Manipulating Date Objects
The Date object's properties can be set on construction and also by using setter
methods during the object's lifetime. Setting all date/time properties at once can
be done by calling setDate(). By default it expects an ISO 8601 date string as a
parameter. Alternatively you can specify another format string by specifying the

Chapter 5

[227]

input format as the second parameter. It can be one of the constants described in the
table showing output format constants for getTime() earlier in this chapter.

If you just want to precisely set a specific property of an object you can use one of the
following setters: setYear(), setMonth(), setDay(), setHour(), setMinute(), and
setSecond(). Each expects a single parameter representing the value to be set.

Another way to manipulate a Date object is to use addSeconds() or
subtractSeconds(). You can specify an amount of seconds to be added or subtracted
to an object's date/time. For example, if you call $date->addSeconds(3600), the
object's hour property would be increased by 1. As you will see in the section
about Date_Span, there is another way to add or subtract timespans to an existing
Date object.

If you have a Date object $a and want to apply its property values to another Date
object $b you can do this by calling copy() on $b and providing $a as argument to
the method. Afterwards $b will have the same date/time values as $a.

This listing shows you the methods to manipulate Date objects in action:

$date = new Date('2005-12-24 09:30:00');
$copy = new Date(); // $copy initialized with current date/time

$copy->copy($date); // $copy => 2005-12-24 09:30:00

$copy->setHour(12); // $copy => 2005-12-24 12:30:00
$copy->setMinute(0); // $copy => 2005-12-24 12:00:00

$copy->addSeconds(30); // $copy => 2005-12-24 12:00:30

$date->setDate($copy->getDate()); // $date => 2005-12-24 12:00:30

Comparing Dates
A typical task when working with dates is to compare them. Date objects provide
methods to:

Check whether an object's time lies ahead or is in the past for a specified date
Check if two objects represent the same date and time
Check if two date objects are equal or which is before or after the other one

If you have a Date object and want to find out how it relates to another Date object
you can use one of the following three methods:

before()
after()
equals()

•

•

•

•

•

•

Working with Dates

[228]

They can be used to check whether two dates are equal or if one is before or after the
other. The following code listing shows how to use them:

$d1 = new Date('2005-12-24');
$d2 = new Date('2005-12-30');

$equal = $d1->equals($d2); // false
$d1_Before_d2 = $d1->before($d2); // true
$d1_After_d2 = $d1->after($d2); // false

The Date class also provides a special method that comes in handy when having to
compare dates to get them sorted. This method is Date::compare() and can be used
statically. The method expects two parameters representing the Date objects to be
compared. It returns 0 if they are equal, -1 if the first is before the second, and 1 if
the first is after the second. This behavior is perfect when you need to sort an array
of Date objects as the method can be used as a user-defined method for PHP's array
sorting functions. The following listing shows how usort() and Date::compare()
can be utilized to sort an array of Date objects.

$dates = array();
$dates[] = new Date('2005-12-24');
$dates[] = new Date('2005-11-14');
$dates[] = new Date('2006-01-04');
$dates[] = new Date('2003-02-12');

usort($dates, array('Date', 'compare'));

As Date::compare() is a static class method you need to pass an array consisting of
two strings representing the class and method name.

Formatted Output
The properties of a Date object can be printed using the format() method. The
returned string is localized according to the currently set locale. You can influence
the locale setting with PHP's setlocale() method.

The following example shows how to use this function:

$date = new Date('2005-12-24 09:30:00');
echo $date->format('%A, %D %T'); // prints: Saturday, 12/24/2005
 //09:30:00

As you see, the format of the returned string can be controlled by specifying
placeholders. The following table shows a list of all valid placeholders you can use.

Chapter 5

[229]

Placeholder Description
%a The abbreviated weekday name (Mon, Tue, Wed, ...)
%A The full weekday name (Monday, Tuesday, Wednesday, ...)
%b The abbreviated month name (Jan, Feb, Mar, ...)
%B The full month name (January, February, March, ...)
%C The century number (ranges from 00 to 99)
%d The day of month (ranges from 01 to 31)
%D Same as %m/%d/%y
%e The day of month with single digit (ranges from 1 to 31)
%E The number of days since Unix epoch (01/01/1970 00:00h GMT)01/01/1970 00:00h GMT))
%h The hour as a decimal number with single digit (0 to 23)
%H The hour as decimal number (ranges from 00 to 23)
%i The hour as decimal number on a 12-hour clock with single digit (ranges from

1 to 12)
%I The hour as decimal number on a 12-hour clock (ranges from 01 to 12)
%j The day of year (ranges from 001 to 366)
%m The month as decimal number (ranges from 01 to 12)
%M The minute as a decimal number (ranges from 00 to 59)
%n The newline character (\n)
%O The DST (daylight saving time)-corrected timezone offset expressed as

'+/-HH:MM'
%o The raw timezone offset expressed as '+/-HH:MM'
%p Either 'am' or 'pm' depending on the time
%P Either 'AM' or 'PM' depending on the time
%r The time in am/pm notation, Same as '%I:%M:%S %p'
%R The time in 24-hour notation, same as '%H:%M'
%s The seconds including the decimal representation smaller than one second
%S The seconds as a decimal number (ranges from 00 to 59)
%t The tab character (\t)
%T The current time, same as '%H:%M:%S'
%w The weekday as decimal (Sunday = 0, Monday = 1, ..., Saturday = 6)
%U The week number of the current year
%y The year as decimal (ranges from 00 to 99)
%Y The year as decimal including century (ranges from 0000 to 9999)
%% The literal %

Creating a Date_Span Object
Besides the Date class PEAR::Date also provides the Date_Span class that is used to
represent timespans with a precision of seconds. The constructor accepts a variety of
different parameters. You can create a timespan from an array, a specially formatted
string, or two date objects. There are some other possibilities but these are the most
common. The following examples will show some ways to accomplish the creation of

Working with Dates

[230]

a Date_Span object that represents a timespan of 1 day, 6 hours, 30 minutes, and
15 seconds.

To create a timespan from an array it has to contain values for days, hours, minutes,
and seconds:

$span = new Date_Span(array(1, 6, 30, 15));

If you specify two Date objects the timespan's value will be the difference between
these two dates:

$span = new Date_Span(
 new Date('2005-01-01 00:00:00'),
 new Date('2005-01-02 06:30:15'));

When passing an integer value it will be taken as seconds:

$span = new Date_Span(109815);

The most flexible way is to pass a string as a parameter. By default this is expected
in Non Numeric Separated Values (NNSV) input format. That means any character
that is not a number is presumed to be a separator. The timespan's length depends
on how many numeric values are found in the string. See the description from the
API documentation:

"If no values are given, timespan is set to zero, if one value is given, it's used for hours, if two
values are given it's used for hours and minutes, and if three values are given, it's used for
hours, minutes, and seconds."

If you specify four values they are used for days, hours, minutes, and seconds
respectively. See the following listing on how to create our desired timespan:

$span = new Date_Span('1,6,30,15');
// thanks to NNSV input format you can use this one, too:
$span2 = new Date_Span('1,06:30:15');

The constructor is able to process very complex and specially formatted strings if you
specify the input format. This can be done by using particular placeholders. Read
more on this in the API documentation for Date_Span::setFromString().

Manipulating Date_Span Objects
The properties of a Date_Span object can be influenced by using one of the various
setter methods. A smart way to manipulate a timespan is using set(). It behaves
exactly like the aforementioned constructor. In fact the constructor just delegates to
this method when setting values for a newly created object. Another possibility is to
use one of the following specific methods to set the timespan from hours, minutes, an

Chapter 5

[231]

array, or something else. The methods are setFromArray(), setFromDateDiff().
setFromDays(), setFromHours(), setFromMinutes(), setFromSeconds(), and
setFromString().

Further you can alter a timespan's value by adding or subtracting another timespan
value. Use the methods add() or subtract() for this purpose:

$span1 = new Date_Span('1 hour');
$span2 = new Date_Span('2 hours');

$span1->add($span2); // $span1 is 3 hours now

Date_Span also provides a copy() method. It works like the Date::copy() method
and you can use it to set the timespan from another Date_Timespan object.

Timespan Conversions
The Date_Span class provides four methods to get the timespan value as a numerical
value. These are toDays(), toHours(), toMinutes(), and toSeconds(), each
returning a value in the according unit:

$span = new Date_Span('1,06:30:15'); // 1 day, 6 hours, 30 min, 15 sec

$days = $span->toDays(); // 1.27100694444
$hours = $span->toHours(); // 30.5041666667
$minutes = $span->toMinutes(); // 1830.25
$seconds = $span->toSeconds(); // 109815

Comparisons
If you need to compare two Date_Span objects there are five relevant methods
you can use: equal(), greater(), greaterEqual(), lower(), and lowerEqual().
Calling one of these methods on an object compares it to another one. Each method
returns a Boolean value:

$span1 = new Date_Span('1,6:30:15');
$span2 = new Date_Span('2,12:30:15');

$span1->lower($span2); // true
$span1->lowerEqual($span2); // true
$span1->equal($span2); // false
$span1->greater($span2); // false
$span1->greaterEqual($span2); // false

Date_Span also provides a compare() method that can be used to sort an array of
Date_Span objects by their length. It expects two timespan objects as arguments and

Working with Dates

[232]

returns 0 if they are equal, -1 if the first is shorter, and 1 if the second is shorter. The
following code shows how to perform the sorting:

$tspans = array();
$tspans[] = new Date_Span('1, 12:33:02');
$tspans[] = new Date_Span('1, 00:33:02');
$tspans[] = new Date_Span('3, 00:00:00');
$tspans[] = new Date_Span('1');

usort($tspans, array('Date_Span', 'compare'));

Another method that cannot be used for comparison purposes but is helpful anyway
is isEmpty(). It returns true if the timespan is zero length or false otherwise:

$span = new Date_Span('');
$empty = $span->isEmpty(); // true

Formatted Output
You can get a formatted string representation of a Date_Span object by using the
format() method. Similar to the Date::format() method, it provides a handful
of placeholders that can be used to achieve the desired output format and returns a
string that is formatted accordingly. The following table shows some of the available
placeholders. More can be found in the API documentation on the Date_Span::
format() method.

Placeholder Description
%C Days with time, same as %D, %H:%M:%S
%d Total days as a float number
%D Days as a decimal number
%h Hours as decimal number (ranges from 0 to 23)
%H Hours as decimal number (ranges from 00 to 23)
%m Minutes as a decimal number (ranges from 0 to 59)
%M Minutes as a decimal number (ranges from 00 to 59)
%R Time in 24-hour notation, same as %H:%M
%s Seconds as a decimal number (ranges from 0 to 59)
%S Seconds as a decimal number (ranges from 00 to 59)
%T Current time equivalent, same as %H:%M:%S

Date Objects and Timespans
The Date class provides two methods that allow you to work with Date_Span
objects. These allow you to do some arithmetic operations on date objects by adding

Chapter 5

[233]

or subtracting timespans. These methods are addSpan() and subtractSpan(),
each expecting a Date_Span object as parameter. The following code shows how to
increase a date by two days:

$date = new Date('2005-12-24 12:00:00');
$span = new Date_Span('2, 00:00:00');

$date->subtractSpan($span);
echo $date->getDate(); // 2005-12-22 12:00:00

This feature can be helpful in a lot of situations. Think about searching for the second
Sunday in December 2005 for example. All you have to do is find the first Sunday
and add a timespan of one week:

$date = new Date('2005-12-01');

// find first Sunday
while ($date->getDayOfWeek() != 0)
{
 $date = $date->getNextDay();
}

// advance to second Sunday
$date->addSpan(new Date_Span('7,00:00:00'));
echo $date->getDate(); // 2005-12-11 00:00:00

Dealing with Timezones using Date_Timezone
A timezone is an area of the earth that shares the same local time.

"All timezones are defined relative to Coordinated Universal Time (UTC). The reference
point for timezones is the Prime Meridian (longitude 0°) which passes through the Royal
Greenwich Observatory in Greenwich, London, United Kingdom. For this reason the term
Greenwich Mean Time (GMT) is still often used to denote the "base time" to which all other
timezones are relative. UTC is, nevertheless, the official term for today's atomically measured
time as distinct from time determined by astronomical observation as formerly carried out at
Greenwich" (http://en.wikipedia.org/wiki/Timezone).

Additionally, several countries all over the world change into another timezone
during the summer (commonly called daylight savings time (DST)). The central
European states share the CET (UTC+1) in the winter and the CEST (UTC+2) during
the summer months.

Luckily PEAR::Date bundles the Date_Timezone class that can ease your pain when
working with timezones.

Working with Dates

[234]

Creating a Date_Timezone object
The class constructor expects a single argument, which is the ID of the timezone
to create. If the timezone ID is valid you will get a corresponding Date_Timezone
object, otherwise the created timezone object will represent UTC.

You can get a Date_Timezone object representing the system's default timezone by
calling the static method getDefault(). If you prefer another default timezone you
can reset it with setDefault(), which can be statically used, too.

When in doubt what timezone IDs you can pass to the constructor or setDefault()
you can find out all the supported timezones by calling Date_Timezone::
getAvailableIDs() or check an ID by using Date_Timezone::isValidID(). The
following listing shows an example demonstrating some of these methods:

require_once 'Date/TimeZone.php'; // TimeZone.php with
 // uppercase 'Z'

$validIDs = Date_Timezone::getAvailableIDs(); // array with
 // about 550 IDs

$tz1 = new Date_Timezone('Europe/London');
echo $tz1->getID(); // Europe/London

// invalid TZ
$tz2 = new Date_Timezone('Something/Invalid');
echo $tz2->getID(); // UTC

// system's default TZ
$default = Date_Timezone::getDefault();
echo $default->getID(); // UTC

Querying Information about a Timezone
The Date_Timezone class provides a set of methods that allow you to query a
timezone's ID, short and long name, whether it has a daylight savings time, and more.
The following table shows these methods and a description for each one:

Method Description
getID() Returns the ID for the timezone.
getLongName() Returns the long name for the timezone.
getShortName() Returns the short name for the timezone.
getDSTLongName() Returns the DST long name for the timezone.
getDSTShortName() Returns the DST short name for the timezone.

Chapter 5

[235]

Method Description
hasDaylightTime() Returns true if the timezone observes daylight savings time,

otherwise false.
getDSTSavings() Get the DST offset for this timezone (Note: this is currently

hard-coded to one hour! The DST offset for some timezones may
differ from that value, which means the returned value would be
incorrect). Returns zero if the timezone does not observe daylight
savings time.

getRawOffset() Returns the raw offset (non-DST-corrected) from UTC for
the timezone.

Comparing Timezone Objects
As you may have guessed, there are some methods that allow you to do comparisons
between Date_Timezone objects. In fact there are two methods—isEqual() and
isEquivalent(). isEqual() checks whether two objects represent an identical
timezone meaning that 'Europe/London' is only equal to 'Europe/London' and
no other timezone. Whereas isEquivalent() can be used to test whether two
timezones have the same offset to UTC and both observe daylight savings time or
not. The following example will show these methods in action:

$london = new Date_Timezone('Europe/London'); // UTC
$london2 = new Date_Timezone('Europe/London'); // UTC
$berlin = new Date_Timezone('Europe/Berlin'); // UTC+1
$amsterdam = new Date_Timezone('Europe/Amsterdam'); // UTC+1

$london->isEqual($london2); // true
$london->isEqual($berlin); // false

$london->isEquivalent($berlin); // false
$berlin->isEquivalent($amsterdam); // true

Date Objects and Timezones
Objects of both the Date class and the Date_Timezone class provide methods for
interaction with each other. For instance you can change the timezone of a Date
object with or without converting its date/time properties. Furthermore you can
check whether a date object's current date/time is in daylight savings time or
calculate the offset from one timezone to UTC considering a certain date/time. The
next table shows methods provided by the Date class that enable you to work
with timezones.

Working with Dates

[236]

Method Description
setTZ($tzObj) Sets the specified timezone object for the Date object.
setTZByID($id) Sets the timezone for the Date object from the specified

timezone ID.
convertTZ($tzObj) Converts the date object's date/time to a new timezone using the

specified timezone object.
convertTZbyID($id) Converts the date object's date/time to a new timezone using the

specified timezone ID.
toUTC() Converts the date object's date/time to UTC and accordingly sets

the timezone to UTC.
inDaylightTime() Tests whether the object's date/time is in DST.

Nobody is perfect, not even PEAR::Date

When it comes to timezones, PEAR::Date relies on
functions that are dependent on the operating system and
not safe to use on every computer. For example, this affects
the methods Date_Timezone::inDaylightTime() and
Date_Timezone::getOffset(). The following short
excerpt indicates these problems:

"WARNINGS: This basically attempts to "trick" the system
into telling us if we're in DST for a given timezone. This uses
putenv(), which may not work in safe mode, and relies on
Unix time, which is only valid for dates from 1970 to ~2038.
This relies on the underlying OS calls, so it may not work on
Windows or on a system where zoneinfo is not installed
or configured properly."

The next listing demonstrates how to use some of these methods. It shows how a
Date object's time is converted from the 'Europe/Berlin' timezone to the 'Europe/
London' timezone.

$date = new Date('2005-12-24 12:00:00');
$date->setTZbyID('Europe/Berlin');
echo $date->getDate(); // 2005-12-24 12:00:00

$date->convertTZbyID('Europe/London');
echo $date->getDate(); // 2005-12-24 11:00:00

Earlier you saw that Date_Timezone provides the getRawOffset() method to
determine the offset of a specific timezone to UTC. This does not consider a specific
date and whether it is in DST. If you want to check the offset to UTC for a specific

Chapter 5

[237]

date and timezone you can call getOffset() on a Date_Timezone object with a Date
object as argument. This method will take into account whether the timezone is in
DST for the specified date and return the DST-corrected offset.

Conclusion on the PEAR::Date Package
As you have seen PEAR::Date is a powerful package that can really bail you out of
a mess when working with dates, doing arithmetic operations with them, or when
having to work with timezones. When looking for a comfortable object-oriented API
or a solution for the year 2038 problem it is definitely worth a test run.

The downside is that especially when working with timezones it relies on
OS-dependent methods and may therefore not work on every system.

Nevertheless it is a great package! You will find no better solution until PHP 5.1 and
its date extension. So if you use PHP < 5.1 stick with the PEAR::Date package.

Date_Holidays
If you develop an application that needs to calculate holidays, PEAR::Date_Holidays
is certainly a helpful solution. Its main job is calculating holidays (or other special
days) and checking whether dates represent holidays. It hides the complexity of
calculating non-static holidays like Easter or Whitsun. Additionally it allows for easy
filtering of holidays and is I18N aware, in so far as it provides information about
holidays in different languages.

Checking if your birthday in 2005 is a holiday is as easy as:

require_once 'Date/Holidays.php';

$driver = Date_Holidays::factory('Christian', 2005);

// actually this checks my date of birth ;-)
if($driver->isHoliday(new Date('2005-09-09')))
{
 echo 'Oh happy day! Holiday and birthday all at once.';
} else {
 echo 'Jay, it is my birthday.';
}

So, if you do not want to reinvent the wheel for a library calculating holidays that
occur on different dates in different religions/countries, use Date_Holidays.

Before we start coding there are some concepts you should understand. But do not
fear—we will keep it short.

Working with Dates

[238]

Instantiating a Driver
Date_Holidays utilizes special classes that perform the calculation of holidays for
specific religions, countries, or regions. These classes are called drivers. That means
you tell Date_Holidays the year and country you want the holidays to be calculated
for and it gives you a driver that you can use to query further information. It will
tell you about the holidays it knows, you can ask it whether a date is a holiday, and
much more.

The driver is instantiated via the Date_Holidays class. It provides a static factory
method that expects the driver ID, year, and locale to be used as arguments and
returns a driver object:

$driver = Date_Holidays::factory($driverId, $year, $locale);
if (Date_Holidays::isError($driver))
{
 die('Creation of driver failed: ' . $driver->getMessage());
} else
{
 // ... go on
 echo 'Driver successfully created!';
}

In this example the method Date_Holidays::factory() take three arguments, of
which only the driver ID is mandatory. The driver ID is the name of the calculation
driver to create. Currently the package ships with the following seven drivers (as of
package version 0.16.1) (driver IDs are formatted in bold):

Christian (Christian holidays)
Composite (Special driver to combine one or more real drivers. It behaves
like a "normal" driver. Read more on this in the section Combining
Holiday Drivers.)
Germany (German holidays)
PHPdotNet (Dates of birth of several PHP community members)
Sweden (Swedish holidays)
UNO (United Nations Organization holidays)
USA (U.S. American holidays)

To find out which drivers your version of Date_Holidays
provides you can simply call the Date_Holidays::
getInstalledDrivers() method, which will return an
array holding the information about installed drivers.

•

•

•

•

•

•

•

Chapter 5

[239]

The second argument is the year for which you want the holidays to be calculated.

The third argument is an optional string that represents the locale that will be used
by the driver. The locale you pass in here affects any driver method that returns a
holiday object, holiday title, or other localized information. A locale string can be
an ISO 639 two-letter language code or a composition of a two-letter language code
and an ISO 3166 two-letter code for a specific country. For instance you would use
"en_GB" for English/United Kingdom. If no locale setting is specified the driver will
use English default translations.

You should always check if the factory method successfully returned a driver
object or produced an error. Date_Holidays utilizes PEAR's default error handling
mechanisms so this can be statically checked with Date_Holidays::isError().

If you want to reset the year for which holidays have been calculated you can use
the setYear() method. It expects one argument representing the new year that
holidays shall be calculated for. Whenever you call this method the driver has to
recalculate the dates of all its holidays, which means that this method is somewhat
computationally expensive.

Creating drivers by country codes instead of driver IDs

The ISO 3166 standard (http://www.iso.org/iso/en/
prods-services/iso3166ma/index.html) defines
codes for the names of countries and dependent areas,
which may consist of two or three letters as well as three
digits. Date_Holidays provides an additional factory
method to create a driver by specifying such a two- or
three-letter code instead of a driver ID. For instance to create
a driver for Sweden you just need to call
Date_Holidays::factoryISO3166('se') or
Date_Holidays::factoryISO3166('swe') instead of
Date_Holidays::factory('Sweden').
View http://www.unc.edu/~rowlett/units/codes/
country.htm to see a list of valid ISO 3166 codes.

Identifying Holidays
To identify a holiday it must have an ID that can be used to refer to it. Think
about it as a primary key in database systems. In the context of Date_Holidays
such an identifier is called an internal name. To get information about a specific
holiday you have to tell a driver the holiday's internal name. To find out which
internal names/holidays it supports, each driver provides a method called
getInternalHolidayNames(). You can see it in the following listing:

Working with Dates

[240]

$driver = Date_Holidays::factory($driverId, $year, $locale);
$internalNames = $driver->getInternalHolidayNames();

This method returns an indexed array that contains the internal holiday names of the
driver:

Array

(

 [0] => jesusCircumcision

 [1] => epiphany

 [2] => mariaCleaning

 ...

 [43] => newYearsEve

)

Knowing all the internal names of the holidays the driver supports gives you a better
overview about which holidays a driver is able to calculate. You will need this when
using the getHoliday() method for instance. More on that later.

The Date_Holidays_Holiday Class
Some methods of a driver return objects of the Date_Holidays_Holiday class. An
object of this type gives you information about a single holiday. See the table below
for the methods that offer information you may need.

Method Description
getDate() Returns a Date object representing the holiday's date.
getInternalName() Returns the holiday's internal name.
getTitle() Returns the holiday's localized title.
toArray() Returns the holiday's data as an associative array. It contains the

keys "date", "internalName", and "title".

Calculating Holidays
After this short introduction you know how to create driver objects. Now it is time to
find out how we can use drivers to find out some information about holidays.

Chapter 5

[241]

Getting Holiday Information
If you are interested in all holidays a driver can provide you should use the
getHolidays() method. It will return an associative array with internal holiday
names as keys and the corresponding Date_Holidays_Holiday objects as values.

A Date_Holidays_Holiday object contains complete information about a holiday,
including its internal name, title, and date. If you are only interested in the title or
date you can use getHolidayTitles() or getHolidayDates(). Both return the
same associative array having internal names as keys and titles or PEAR::Date
objects as values.

The following listing shows these methods in action:

$driver = Date_Holidays::factory('Christian', 2005);
$holidays = $driver->getHolidays(); // returns associative array
$titles = $driver->getHolidayTitles(); // returns associative array
$dates = $driver->getHolidayDates(); // returns associative array

Date_Holidays and dates

PEAR::Date_Holidays uses PEAR::Date objects
to represent the dates of holidays. The hour, minute,
and second properties of these objects are always zero.
Additionally the timezone used by the objects is UTC.

When you do not want information about all holidays a driver provides but only
about a specific holiday you can use getHoliday(). It expects the holiday's internal
name as the first argument. Assuming we want to get information on Easter Sunday
we have to pass "easter" because it is the internal name used for this holiday.

Some methods do not return a complete holiday object but only the title or date
information. These are getHolidayTitle() and getHolidayDate(). Just like
getHoliday() each one expects the internal holiday name as the first argument. On
success you get the specified holiday's title or its date as a PEAR::Date object.

The next listing demonstrates the usage of the methods mentioned above:

$driver = Date_Holidays::factory('Christian', 2005);
$holiday = $driver->getHoliday('easter');
 // Date_Holidays_Holiday object
$title = $driver->getHolidayTitle('easter');
 // string(13) "Easter Sunday"
$date = $driver->getHolidayDate('easter');
 // Date object: 2005-03-27

Working with Dates

[242]

Filtering Results
Some methods introduced in the previous section provided information about
multiple holidays by using arrays as return values. By default, a driver returns
information about all holidays it knows. Sometimes this is more information than
you need. To enable you to restrict the amount of returned data, these methods allow
the use of filters.

A filter is an object that contains internal names of holidays. When you pass it to
functions that return a list/array of holidays as result, it decides which ones are
included in the return value.

Date_Holidays supports different types of filters:

Blacklist Filters: Elements of a blacklist filter are excluded from a method's
return value. Filter class: Date_Holidays_Filter_Blacklist.
Whitelist Filters: If specified, only elements of a whitelist filter are included
in a method's return value. Filter class: Date_Holidays_Filter_Whitelist.
Composite Filters: A composite filter allows you to combine several filters
into a single one. It behaves just like a normal filter. The single filters are
combined in an OR relation.
Predefined Filters: Predefined filters are available for various purposes. For
instance there are filters that only accept official holidays. Currently there are
only a few predefined filters included in the Date_Holidays package.

To find out which filters your version of Date_Holidays
provides you can simply call the Date_Holidays::
getInstalledFilters() method, which will return an
array holding the information about installed filters.

Blacklist and whitelist filters are created by using their one-argument constructor,
whose argument has to be an array containing internal holiday names. The following
example shows how to create and use these filter types:

$driver = Date_Holidays::factory('Christian', 2005);

echo count($driver->getHolidays()); // prints: 44

$whitelist = new Date_Holidays_Filter_Whitelist(
 array('goodFriday', 'easter', 'easterMonday'));
$wlHolidays = $driver->getHolidays($whitelist);
echo count($wlHolidays); // prints: 3

•

•

•

•

Chapter 5

[243]

$blacklist = new Date_Holidays_Filter_Blacklist(
 array('goodFriday', 'easter', 'easterMonday'));
$blHolidays = $driver->getHolidays($blacklist);
echo count($blHolidays); // prints: 41

As the example shows, the driver knows 44 holidays. If you use the whitelist filter
getHolidays() returns an array containing exactly three elements (goodFriday,
easter, and easterMonday). When using a blacklist filter that contains these
elements, they are not included in the return value. Thus the returned array contains
only 41 elements. Using these two filter types you can decide for yourself which
holidays you are interested in.

Predefined filters are blacklist or whitelist filters that have internal knowledge about
which holidays are accepted or denied. This means you can instantiate them by
using an argument-less constructor. All necessary internal holiday names are already
defined in the classes themselves. You can instantiate a predefined filter using the
new operator and pass it to any function accepting filters.

If you want to use a combination of two or more filters, this can be done by using
the Date_Holidays_Filter_Composite class. This is primarily useful to combine
predefined filters but of course you can use any class that extends Date_Holidays_
Filter. All you need to do is create a composite filter object and add (addFilter())
or remove (removeFilter()) filter objects. Afterwards you can start using the filter.
See the following listing:

require_once 'Date/Holidays.php';
require_once 'Date/Holidays/Filter/Composite.php';

$driver = Date_Holidays::factory('Christian', 2005);

$filter1 = new Date_Holidays_Filter_Whitelist(
 array('goodFriday', 'easter'));
$filter2 = new Date_Holidays_Filter_Whitelist(
 array('easterMonday'));

$composite = new Date_Holidays_Filter_Composite();
$composite->addFilter($filter1);
$composite->addFilter($filter2);

$holidays = $driver->getHolidays($composite);
echo count($holidays); // prints: 3

Note that you have to explicitly include the file containing the Date_Holidays_
Filter_Composite class. It is rarely used in Date_Holidays and therefore not
included by default.

Working with Dates

[244]

Combining Holiday Drivers
As mentioned in the previous section, it is possible to combine several filters and
treat them like a normal filter. This works just as well for driver objects. To do so,
you first need to instantiate an object of Date_Holidays_Driver_Composite class
via the Date_Holidays::factory() method. Afterwards you can use addDriver()
to add a driver object to the compound and removeDriver() to remove one. Both
methods expect the affected driver object as argument. See the following listing for
an example. If you add together the internal names of the two standalone drivers
you will see that the composite driver is indeed a combination of both of them.

$driver1 = Date_Holidays::factory('Christian', 2005);
echo count($driver1->getInternalHolidayNames()); // prints: 44

$driver2 = Date_Holidays::factory('UNO', 2005);
echo count($driver2->getInternalHolidayNames()); // prints: 67

$composite = Date_Holidays::factory('Composite');
$composite->addDriver($driver1);
$composite->addDriver($driver2);

$holidays = $composite->getInternalHolidayNames();
echo count($holidays); // prints: 111

Is Today a Holiday?
Date_Holidays provides two ways to check whether a certain date represents
a holiday.

Use isHoliday() to determine whether a certain date represents a holiday.
It expects a Unix timestamp, ISO 8601 date string, or a Date object as the first
argument. Optionally you can pass a filter object as the second argument. The
method always returns a Boolean value. Let us see if 5th May, 2005 is a holiday:

$driver = Date_Holidays::factory('Christian', 2005);

if ($driver->isHoliday('2005-05-05'))
{
 echo 'It is a holiday!';
} else
{
 echo 'It is not a holiday!';
}

If you want to get information about a specific date's holiday(s) you can use
getHolidayForDate(). Like isHoliday() it expects a variable identifying a date as

Chapter 5

[245]

first argument. By default the method returns a Date_Holidays_Holiday object if it
finds a holiday for this date or null if none was found. In the real world it is possible
that there are multiple holidays on the same date. If you are using composite drivers
the possibility is even higher. To address this issue you can use the third argument to
define whether you accept multiple matches. If you pass a Boolean true the return
value of the method will be an array containing holiday objects, even if it only finds a
single match.

For the sake of completeness the second argument has to be mentioned here too. It
can be used to specify a locale. If passed, it forces the method to use the specified
locale instead of the global one set for the driver. We will talk about that later in the
section Multi-Lingual Translations.

The next listing is an example on how to use getHolidayForDate():

$driver = Date_Holidays::factory('Christian', 2005);
$date = '2005-05-05';

// no multiple return-values
$holiday = $driver->getHolidayForDate($date);
if (! is_null($holiday))
{
 echo $holiday->getTitle();
}

// uses multiple return-values
$holidays = $driver->getHolidayForDate($date, null, true);
if (! is_null($holidays))
{
 foreach ($holidays as $holiday)
 {
 echo $holiday->getTitle();
 }
}

The example shows how the method's return value changes depending on the setting
of the third argument. One time you get a holiday object and the other time an array
is returned.

Using these methods you could also retrieve all holidays within a certain timespan by
using a loop. Fortunately Date_Holidays provides the getHolidaysForTimepspan()
method, which makes this a lot easier for you. Additionally it is faster because
internally it uses a hashed structure where holidays are already indexed by their date.
The method expects two arguments that specify the start and end date of the timespan.
The method returns an array that contains Date_Holidays_Holiday objects of all

Working with Dates

[246]

holidays within the given timespan. Like several other methods you already know, it
additionally allows you to specify a filter and locale as the third and fourth arguments.

Multi-Lingual Translations
It was mentioned that Date_Holidays provides internationalization (I18N)
features. This means that it provides holiday information in different languages.
It uses language files in XML format, each containing a set of translations for a
certain driver's holidays. These XML files contain information that allows you to
assign localized titles to holidays. The next listing shows an excerpt of the French
translations for the Christian driver:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes" ?>
<driver-data>
 <holidays>
 <holiday>
 <internal-name>jesusCircumcision</internal-name>
 <translation>Circoncision de Jésus</translation>
 </holiday>

 <holiday>
 <internal-name>epiphany</internal-name>
 <translation>'épiphanie</translation>
 </holiday>

 [...]

 </holidays>
</driver-data>

When you want to use the I18N features you have to tell Date_Holidays where
it can find the necessary language files and set the driver's locale according to the
translation you desire. The bundled language files will be installed in the data
directory of your PEAR installation.

The language files allow you to specify translations for holiday titles and also define
additional information about holidays. Using the <property> tag you can specify
as much information as you desire. Each property has a unique ID (in the scope
of a single holiday) and character data value. The XML markup could look like
the following:

<holiday>
 <internal-name>jesusCircumcision</internal-name>
 <translation>Circoncision de Jésus</translation>

Chapter 5

[247]

 <properties>
 <property id="type">static</property>
 <property id="since">4th century</property>
 </properties>
</holiday>

There are no predefined values you should use as ID; this is completely up to
you. You can store any information you desire. You could use the properties to
state if a holiday occurs statically, you could provide a detailed description, etc.
There are two ways to access the property information for a holiday. You can use
Date_Holidays_Holiday::getProperties() if you have a holiday object or the
getHolidayProperties() method of a Date_Holidays_Driver object. It expects
the internal holiday name and the locale identifier as arguments.

Adding a Language File
To add a language file, driver classes provide the methods addTranslationFile()
and addCompiledTranslationFile(). The first method allows you to add a
translation file containing XML data; the second expects a file with serialized data.
The second method works a lot faster because it does not need to parse the XML
anymore. Both methods expect two arguments—the absolute path to of the file and
the locale of the translations contained by the file respectively.

$driver = Date_Holidays::factory('Christian', 2005);

$file = '/var/lib/pear/data/Date_Holidays/lang/Christian/fr_FR.xml';
$driver->addTranslationFile($file, 'fr_FR');

After adding translations this way a driver will be able to provide localized
information.

Compiled language files use the .ser file extension and reside in the same directory
as the normal XML language files.

You can even build your own language files and put them into whatever directory
you like. If they are valid and Date_Holidays has the necessary rights to access
them it will be able to use them. To compile your custom XML language files you
can use the pear-dh-compile-translationfile CLI script that comes with Date_
Holidays. It expects the name of the file to be converted (it can also handle multiple
filenames) and writes the compiled data to a file using the same base name and the
.ser file extension. You can type pear-dh-compile-translationfile --help on
your PHP-CLI prompt to get detailed information about the script and its options:

$ pear-dh-compile-translationfile --help

Date_Holidays language-file compiler

--

Working with Dates

[248]

Usage: pear-dh-compile-translationfile [options] filename(s)

-d --outputdir=<value> Directory where compiled files are saved. Defaults
 to the current working directory.

-v --verbose Enable verbose mode.

--parameters values(1-...) Input file(s)

Getting Localized Output
You can control the output language of driver methods by defining a locale. This
setting can affect an entire driver object or a single method call.

Setting the locale for an entire driver object can be done in two different ways:

1. On construction of the driver object via the Date_Holidays::factory()
method. The third argument can be used to pass a string identifying the
locale to be used.

2. After construction of the driver object using the setLocale() method, which
expects the locale string as argument.

Several driver methods also support setting a locale that is used during the method
call: getHoliday(), getHolidayForDate(), getHolidays(), getHolidayTitle(),
and getHolidayTitles(). Each of these methods expects the locale as one of
its arguments.

The next listing shows how the per-driver and per-method localization settings affect
the output.

// driver uses Italian translations by default
$driver = Date_Holidays::factory('Christian', 2005, 'it_IT');

$driver->addCompiledTranslationFile(
 '/var/lib/pear/data/Date_Holidays/lang/Christian/it_IT.ser',
 'it_IT');
$driver->addCompiledTranslationFile(
 '/var/lib/pear/data/Date_Holidays/lang/Christian/fr_FR.ser',
 'fr_FR');

// uses default translations
echo $driver->getHolidayTitle('easter') . "\n";

// per-method French translation
echo $driver->getHolidayTitle('easter', 'fr_FR') . "\n";

// set fr_FR as default locale
$driver->setLocale('fr_FR');

Chapter 5

[249]

// uses default translations. now French
echo $driver->getHolidayTitle('easter') . "\n";

When executed the script prints:

Domenica di Pasqua della Risurrezione

dimanche de Pâques

dimanche de Pâques

Note that not all translation files are complete. That means it is possible that you
add a language file (e.g. French), set an according locale (e.g. fr_FR), but do not
get the right translation of a holiday title. This can happen when a language file
does not contain the required translation. By default the method called will raise an
error when it encounters this problem. But you can modify this behavior by using
the Date_Holidays::staticSetProperty() method. It expects the name of the
property to be modified as first argument and its value as the second. The property
you need to set is called "DIE_ON_MISSING_LOCALE". If you set it to false, you will
get the driver's English default translation when no localized value can be found.
You can decide which way you prefer. The following example shows how to handle
the static properties:

$driver = Date_Holidays::factory('Christian', 2005, 'fr_FR');
$driver->addCompiledTranslationFile(
 '/var/lib/pear5/data/Date_Holidays/lang/Christian/fr_FR.ser',
 'fr_FR');

// default setting, no need to explicitly set this
Date_Holidays::staticSetProperty('DIE_ON_MISSING_LOCALE', true);

$title = $driver->getHolidayTitle('whitMonday');
if (Date_Holidays::isError($title))
{
 echo $title->getMessage();
} else
{
 echo $title;
}
echo "\n---\n";

// default setting, no need to explicitly set this
Date_Holidays::staticSetProperty('DIE_ON_MISSING_LOCALE', false);

// no need to check for an error but title may not be correctly
// localized
echo $driver->getHolidayTitle('whitMonday') . "\n";

Working with Dates

[250]

The script will produce the following output:

The internal name (whitMonday) for the holiday was correct but no localized title
could be found

Whit Monday

Help appreciated

If you write a custom driver for Date_Holidays that
could be included in the distribution, feel free to contact
the package maintainers or open a feature request at the
package homepage on the PEAR website to attach a patch in
the bug tracking tool.

Conclusion on Date_Holidays
Date_Holidays eases the task of calculation and internationalization of holidays
or other special events. Currently it supports six drivers. Most language files are
available in English and German, and some in French and Italian. The amount of this
bundled data could be larger and will hopefully increase in future releases.

Nevertheless the package provides a well thought-out architecture you can easily
extend by writing your own drivers, filters, and language files.

Working with the Calendar Package
If you search for PHP-based calendar utilities on the Web you will find lots of
solutions. Some are good, others are not. However, in most cases you will experience
some constraints. Several libraries have month/day names hard-coded or are tied to
a specific output format.

PEAR::Calendar helps you generate calendar structures without forcing you to
generate a certain type of output or depending on a special data store as back end.
It simplifies the task of generating tabular calendars and allows you to render
whatever output you like (e.g. HTML, WML, ASCII).

The package provides classes representing all important date entities like year, month,
week, day, hour, minute, and second. Each date class can build subordinated entities.
For instance an object representing a month is able to build contained day objects. Try
the following script to build and fetch objects for each day in December 2005:

Chapter 5

[251]

// Switch to PEAR::Date engine
define('CALENDAR_ENGINE', 'PearDate');

require_once 'Calendar/Month.php';
require_once 'Calendar/Day.php';

$month = new Calendar_Month(2005, 12); // December 2005
$month->build(); // builds the contained day objects

// iterate over the fetched day objects
while ($day = $month->fetch())
{
 echo $day->getTimestamp() . "\n";
}

As a result it prints the timestamps for each day in a single line:

2005-12-01 00:00:00

2005-12-02 00:00:00

...

2005-12-31 00:00:00

Most methods return numeric values, which is a great benefit when trying to build
language-independent applications. You can localize date formats and names by
directly using PHP's native functions or the PEAR::Date functions.

PEAR::Calendar supports different calculation engines. It bundles a Unix timestamp
and a PEAR::Date-based engine. You could even build a calendar engine for more
complex calendars like the Chinese one.

Whenever you lack a feature you can easily add it by using decorators. PEAR::
Calendar already provides a decorator base you can rely on when building your
own decorators. This way your modifications will not necessarily be overwritten by
future releases of the Calendar package.

The following sections introduce the PEAR::Calendar package and show how to
benefit from the possibilities it provides.

Working with Dates

[252]

Calendar engines

PEAR::Calendar uses calendar engines to perform date
and time calculations. These classes implementing the
Calendar_Engine interface are exchangeable. Currently
there is an engine based on Unix timestamps (used by
default) and one based on PEAR::Date. You can choose
which one to use by redefining the 'CALENDAR_ENGINE'
constant. The possibilities are: define('CALENDAR_
ENGINE', 'UnixTs') or define('CALENDAR_ENGINE',
'UnixTs').

Introduction to Basic Classes and Concepts
PEAR::Calendar provides a lot of public classes you can use to solve different
problems. Each of those classes falls into one of four categories. These are date
classes, tabular date classes, decorators, and validation classes. First you will get to
know the basic calendar date and tabular date classes.

Each date class represents one of the basic date entities: year, month, day,
hour, minute, and second. Tabular date classes are mainly designed for building
table-based calendars. Classes of both categories are descendants of the Calendar
class and they inherit its methods. A UML diagram of the Calendar class is shown in
the figure opposite.

Chapter 5

[253]

The following table lists the date classes, their include path, a short description for
each, and the names of entities the class is able to build.

Class require/include Description Builds
Calendar_Year Calendar/Year.php Represents a year. Calendar_Month,

Calendar_Month_
Weekdays,
Calendar_Month_
Weeks

Calendar_Month Calendar/Month.php Represents a
month.

Calendar_Day

Calendar_Day Calendar/Day.php Represents a day. Calendar_Hour

Calendar_Hour Calendar/Hour.php Represents a hour. Calendar_Minute

Calendar_
Minute

Calendar/
Minute.php

Represents a
minute.

Calendar_Second

Calendar_
Second

Calendar/Second.
php

Represents a
second.

-

Working with Dates

[254]

The tabular date classes make it easy to render tabular calendars. Therefore these
classes set information about whether a day is empty, the first, or last in the tabular
representation. The figure showing a tabular calendar for September 2005 makes
this clear. Empty days are gray, first days are green, and last days are orange. The
corresponding Calendar_Day objects return true when the isEmpty(), isFirst(),
or isLast() method is invoked.

The following table shows the tabular date classes:

Class require/include Description Builds
Calendar_Month_
Weekdays

Calendar/Month/
Weekdays.php

Represents a month and is
able to build contained day
objects. In addition to the
Calendar_Month class it
sets the information for the
isFirst(), isLast(), and
isEmpty() states for each
day being built. This can be
used when building tabular
output for a calendar's month
view.

Calendar_
Day

Calendar_Month_
Weeks

Calendar/Month/
Weeks.php

Represents a month and is
able to build week objects.

Calendar_
Week

Calendar_Week Calendar/Week.
php

Represents a tabular week
in a month. It is able to
build day objects and sets
the isEmpty() status if
necessary.

Calendar_
Day

Chapter 5

[255]

Object Creation
The constructor of each basic date class accepts integer values as arguments. The
number of arguments you need to pass on construction depends on what kind
of date object you want to create. In general you need to define just as many
arguments are as needed to exactly locate a certain date entity. A year would need
one argument to be sufficiently accurately specified, but you have to specify three
arguments when creating a Calendar_Day object. The following listing shows the
construction of every single basic calendar class.

// date classes
$year = new Calendar_Year(2005);
$month = new Calendar_Month(2005, 12);
$day = new Calendar_Day(2005, 12, 24);
$hour = new Calendar_Hour(2005, 12, 24, 20);
$minute = new Calendar_Minute(2005, 12, 24, 20, 30);
$second = new Calendar_Second(2005, 12, 24, 20, 30, 40);

// tabular date classes
$firstDay = 0; // Sunday is the first day in the tabular
 // representation
$monthWkD = new Calendar_Month_Weekdays(2005, 12, $firstDay);
$monthWk = new Calendar_Month_Weeks(2005, 12, $firstDay);
$week = new Calendar_Week(2005, 12, 24, $firstDay);

The tabular date classes allow you to specify a third argument representing the first
day. This can be a number from 0 to 6 (Sunday = 0, Monday = 1, ..., Saturday = 6).
This example already shows a nice feature of the Calendar package:
$week would be the week that contains 24th December 2005. You just had to call
$week->thisWeek('n_in_month') to get the week number within the month and
$week->thisWeek('n_in_year') to get the week number within the current year.

Querying Information
The basic calendar classes provide several methods for retrieving information from
a certain object. There are methods that allow you to determine what date/time an
object represents or which dates come before or after. The methods are this*(),
prev*(), and next*(). The asterisk stands for a certain date unit. It can be Year,
Month, Day, Hour, Minute, or Second. The Calendar_Week class additionally
provides the methods thisWeek(), prevWeek(), and nextWeek(). The following
example shows how these methods are called on a Calendar_Day object.

$day = new Calendar_Day(2005, 12, 24);

echo $day->thisYear(); // prints: 2005

Working with Dates

[256]

echo $day->thisMonth(); // prints: 12
echo $day->thisDay(); // prints: 24
echo $day->thisHour(); // prints: 0
echo $day->thisMinute(); // prints: 0
echo $day->thisSecond(); // prints: 0

The this*(), prev*(), and next*() methods accept an optional argument that
allows you to influence the returned value. This is achieved by passing a string that
determines the return value format. Possible values for the string argument are:

"int": The integer value of the specific unit; this is the default setting if no
argument is specified.
"timestamp": Returns the timestamp for the specific calendar date unit.
"object": Returns a calendar date object; this is useful in combination with
the methods next*() and prev*().
"array": Returns the date unit's value as an array.

Possible arguments for the methods thisWeek(), prevWeek(), and nextWeek() of
Calendar_Week are "timestamp", "array", "n_in_month", and "n_in_year". The
next listing shows how to use the preceding arguments to influence the return value
of the methods.

$second = new Calendar_Second(2005, 12, 24, 20, 30, 40);

echo $second->nextDay('int') . "\n";
echo $second->nextDay('timestamp') . "\n";
print_r($second->nextDay('object'));
print_r($second->nextDay('array'));

The example prints the following output:

25

2005-12-25 00:00:00

Calendar_Day Object

(

 ! contents omitted for brevity !

)

Array

(

•

•

•

•

Chapter 5

[257]

 [year] => 2005

 [month] => 12

 [day] => 25

 [hour] => 0

 [minute] => 0

 [second] => 0

)

The Calendar class provides two more methods: getTimestamp() and
setTimestamp(). As the name suggests, getTimestamp() returns the timestamp
value of the calendar date object and setTimestamp() allows you to modify an
object's date/time. The value returned by getTimestamp() depends on the calendar
engine used. If you use the Unix timestamp-based engine it will return a Unix
timestamp. If you use the PEAR::Date-based engine it will return a string of the
format YYYY-MM-DD hh:mm:ss. Note that calling $day->getTimestamp() has the
same effect as $day->thisDay('timestamp').

Building and Fetching
As mentioned in the introduction to the Calendar package, the date classes and
tabular date classes are able to build contained date entities. They provide the
build() method that can be used to generate the "children" of the current date object.

Once the build() method has been called you can access one child after the other or
all together. To access the children in a row you can use the fetch() method, which
utilizes the iterator concept. Each call returns one child of the series. A subsequent
call will return the next child and when the end of the series is reached fetch()
returns false. This way you can comfortably iterate over all children in a while
loop. The following code listing shows how to use the iterator concept. It should look
familiar to you, as you have already seen it in the introduction.

$month = new Calendar_Month(2005, 12); // December 2005
$month->build();

while ($day = $month->fetch())
{
 echo $day->getTimestamp() . "\n";
}

The script builds the contained days of December 2005 and prints a formatted date
for each day:

Working with Dates

[258]

2005-12-01 00:00:00

2005-12-02 00:00:00

...

2005-12-31 00:00:00

To get all children at once you can use the fetchAll() method, which will return an
indexed array containing the date objects representing the children. Depending on
the date class, the returned array starts with an index equal to 0 or 1. For Calendar_
Year, Calendar_Month, Calendar_Month_Weekdays, Calendar_Month_Weeks, and
Calendar_Week the array's first index is 1. For Calendar_Day, Calendar_Hour,
Calendar_Minute, and Calendar_Second it is 0. If you wonder why, have a look at
the tables for the date and tabular date classes and consider what type of children a
class builds. The ones that build hours, minutes, and seconds return arrays starting
with a 0 index.

The concept of building and fetching introduced in this section makes the creation of
calendar date objects a non-computationally-expensive operation. Children are never
built on construction but only when you really request them and explicitly call the
build() method.

Make a Selection
The build() method can specially mark items when it builds them. This is done
when you specify an indexed array of date objects that will be taken as a selection.
When the build() method generates the children, it compares them to the items
of the array and when it finds an equal match the generated child is selected. After
selection, calling the isSelected() method on the child returns true. You could
use this feature to mark days that should look special in a generated output of a
calendar. The next listing shows how the selection feature works.

$month = new Calendar_Month(2005, 12);

$stNicholas = new Calendar_Day(2005, 12, 6);
$xmasEve = new Calendar_Day(2005, 12, 24);

$selection = array($stNicholas, $xmasEve);
$month->build($selection);

while ($day = $month->fetch())
{
 if ($day->isSelected())
 {
 echo $day->getTimestamp() . "\n";

Chapter 5

[259]

 }
}

The script prints:

2005-12-06 00:00:00

2005-12-24 00:00:00

The objects in the $selection array matching the children that are being built will
replace them. That means fetch() or fetchAll() will return the object you put into
the selection array. This way you can insert your own special objects. Normally you
will accomplish this by extending the Calendar_Decorator base class for decorators.
You will find out more about decorators in the section Adjusting the Standard
Classes' Behavior.

Validating Calendar Date Objects
PEAR::Calendar provides validation classes that are used to validate calendar
dates. For a simple validation you can call the isValid() method on every subclass
of Calendar. This method returns true if the date is valid or false otherwise. To
allow more fine-grained validation, each of the basic calendar classes can return a
Calendar_Validator object via the getValidator() method. The validator object
provides a handful of methods that help you identify an error more precisely. The
methods of the Calendar_Validator class are described in the next table.

Method Description
fetch() Iterates over all validation errors.
isValid() Tests whether the calendar object is valid. This calls all the

isValid*() methods.
isValidDay() Tests whether the calendar object's day unit is valid.
isValidHour() Tests whether the calendar object's hour unit is valid.
isValidMinute() Tests whether the calendar object's minute unit is valid.
isValidMonth() Tests whether the calendar object's month unit is valid.
isValidSecond() Tests whether the calendar object's second unit is valid.
isValidYear() Tests whether the calendar object's year unit is valid.

The following listing is an example of how to validate calendar date objects:

$day = new Calendar_Day(2005, 13, 32);

if (! $day->isValid()) {
 echo "Day's date is invalid! \n";

Working with Dates

[260]

 // finer grained validation
 $validator = $day->getValidator();

 if (! $validator->isValidDay())
 {
 echo "Invalid day unit: " . $day->thisDay() . "\n";
 }
 if (! $validator->isValidMonth())
 {
 echo "Invalid month unit: " . $day->thisMonth() . "\n";
 }
 if (! $validator->isValidYear())
 {
 echo "Invalid year unit: " . $day->thisYear() . "\n";
 }
}

The example will print:

Day's date is invalid!

Invalid day unit: 32

Invalid month unit: 13

Validation Versus Adjustment
Instead of validating date objects you can also adjust them to represent valid dates.
All you have to do is call the adjust() method. It will transmogrify the invalid date
into a valid one. For instance 32 December 2005 would be adjusted to 2006-02-01:

$day = new Calendar_Day(2005, 13, 32);
$day->adjust();

echo $day->getTimestamp(); // prints: 2006-02-01 00:00:00

Dealing with Validation Errors
The Calendar_Validator class allows you to iterate over existent errors using the
fetch() method. It returns Calendar_Validation_Error objects or false if there
are no errors. Such an error object provides four methods: getMessage(), getUnit(),
getValue(), and toString().

Chapter 5

[261]

See their descriptions in the following table.

Method Description
getMessage() Returns the validation error message. These validation error messages

are in English but can be modified by redefining the constants
CALENDAR_VALUE_TOOSMALL and CALENDAR_VALUE_TOOLARGE.

getUnit() Returns the invalid date unit. The unit is one of the following: "Year",
"Month", "Day", "Hour", "Minute", "Second".

getValue() Returns the value of the invalid date unit. This is the same integer that
would be returned by calling thisYear(), thisMonth(), etc.

toString() Returns a string containing the error message, unit, and the unit's
value. Actually it is a combination of the first three methods.

Using these methods you can exactly locate the reason for the invalidity. See the
next listing for an example on how to iterate over existent validation errors and
display them.

$day = new Calendar_Day(2005, 13, 32);

if (! $day->isValid())
{
 $validator = $day->getValidator();
 while ($error = $validator->fetch())
 {
 echo sprintf("Invalid date: unit is %s, value is %s. Reason: %s
\n",
 $error->getUnit(),
 $error->getValue(),
 $error->getMessage());
 }
}

The output of the script looks like the following:

Invalid date: unit is Month, value is 13. Reason: Too large: max = 12

Invalid date: unit is Day, value is 32. Reason: Too large: max = 31

Adjusting the Standard Classes' Behavior
Decorators allow you to add custom functionality to the main calendar objects. The
benefit of using a decorator is that you do not directly need to extend one of the main
calendar classes.

Working with Dates

[262]

What are Decorators?
Decorators allow you to dynamically broaden the functionality of an object. A
decorator achieves this by wrapping the object to be modified instead of extending
it. The benefit is that this way you can choose which objects should be decorated
instead of influencing all objects of a certain class.

A decorator normally expects the object to be decorated as an argument on
construction and provides the same API as the wrapped object or offers even more
methods. Set up this way, a decorator can decide on its own whether method calls are
routed through to the decorated object with or without modifying the return value.

The Common Decorator Base Class
PEAR::Calendar comes with a decorator base class—Calendar_Decorator. This
provides the combined API of all subclasses of the Calendar class. Calendar_
Decorator expects an object of type Calendar as an argument in the constructor.
It does not decorate anything but only passes all method calls to the decorated
Calendar object that was passed on construction. This saves you a lot of work when
building your own decorators as you just have to extend Calendar_Decorator
without the need to implement any delegation method.

As mentioned in the section Make a Selection you can inject objects with custom
functionality by passing an array of these to the build() method of a calendar date
object. Each object in the array has to implement the public API of the Calendar
class. The best way to make your custom classes meet these requirements is letting
them extend the Calendar_Decorator class.

Bundled Decorators
PEAR::Calendar ships with a few decorators that may come in handy in some
situations. To use one of these classes you have to explicitly include them in your
script. See a list of the bundled decorators in the following table:

Decorator Description
Calendar_Decorator_
Textual

Helps you with fetching textual representations of months
and weekdays. If performance matters you should use
the Calendar_Util_Textual class unless you have an
important reason for using a decorator.

Calendar_Decorator_Uri Helps you with building HTML links for navigating the
calendar. If performance matters you should use the
Calendar_Util_Uri class unless you have an important
reason for using a decorator.

Chapter 5

[263]

Decorator Description
Calendar_Decorator_
Weekday

Helps you with fetching the day of the week.

Calendar_Decorator_
Wrapper

Helps you wrap built children in another decorator.
Decorates the fetch() and fetchAll() methods and
allows you to specify the name of a decorator that will wrap
the fetched object.

Generating Graphical Output
When talking about calendars in websites most people think about tabular formatted
widgets that allow you to navigate through the months, weeks, and days of a year.
PEAR::Calendar has some nice features that help you build calendars like that.
Theoretically you could build a calendar so detailed that it allows you to browse a
year from a monthly to minutely perspective.

The methods isFirst(), isLast(), and isEmpty() of the Calendar_Day class help
you build up the tabular structure. You would need the following few lines of code
to render a tabular calendar output for September 2005:

// September 2005, first day is Monday
$month = new Calendar_Month_Weekdays(2005, 9, $firstDay = 1);
$month->build();

// localized text for the calendar headline
$header = strftime('%B %Y', $month->thisMonth('timestamp'));

echo <<<EOQ
<table width="250">
 <!-- calendar headline -->
 <tr><td colspan="7" align="center">$header</td></tr>
 <tr>
 <td align="center">Mon</td>
 <td align="center">Tue</td>
 <td align="center">Wed</td>
 <td align="center">Thu</td>
 <td align="center">Fri</td>
 <td align="center">Sat</td>
 <td align="center">Sun</td>
 </tr>

 <!-- calendar data -->

Working with Dates

[264]

 <tr>

EOQ;

// iterate over the built weekdays and display them
while ($Day = & $month->fetch())
{
 if ($Day->isFirst())
 {
 echo '<tr>';
 }

 if ($Day->isEmpty())
 {
 echo '<td><div> </div></td>';
 }
 else
 {
 echo '<td align="center"><div>'.$Day->thisDay().'</div></td>';
 }

 if ($Day->isLast())
 {
 echo "</tr>\n";
 }
}

echo '</table>';

When a Calendar_Day object indicates that it is the first (isFirst() returns true) a
new row is started. Empty days (isEmpty() returns true) are rendered as table cells
with a non-breaking space entity () and after days that indicate they are the last
(isLast() returns true) a table row is ended. The resulting output in the browser is
shown in the following screenshot:

Chapter 5

[265]

Navigable Tabular Calendars
Normally you will not only render a static calendar but also one that allows the user
to browse different months/weeks/days or more. PEAR::Calendar comes with
two classes that help you to render links for navigation: Calendar_Util_Uri and
Calendar_Decorator_Uri, which both solve the same problems. If you care about
performance you should stick to the Calendar_Util_Uri class. The constructor
expects at least one and up to six arguments. You can use them to specify the names
of request parameters used for year, month, day, hour, minute, and second. An
object created with $foo = new Calendar_Util_Uri('y', 'm', 'd') would generate
URI strings looking like this: "y=2005&m=9&d=9". The more fragment names you
specify, more the parameters are contained in the URI string. The class provides
three methods prev(), next(), and this(), which return the URI string for the
previous, next, or current date unit. Each of these methods expects a subclass of
Calendar as the first argument and a string identifying the affected date unit as
the second argument. This string must be one of "year", "month", "week", "day",
"hour", "minute", or "second". The following listing shows an extended version of
the preceding example. This one has added arrows in the calendar header that allow
you to step one month back and forward.

// get date information from request or use current date
$y = isset($_GET['year']) ? $_GET['year'] : date('Y');
$m = isset($_GET['month']) ? $_GET['month'] : date('m');

$month = new Calendar_Month_Weekdays($y, $m, $firstDay = 1);
$month->build();

// Localized text for the calendar headline
$header = strftime('%B %Y', $month->thisMonth('timestamp'));

// URI Util for generation of navigation links
$uriUtil = new Calendar_Util_Uri('year', 'month');
$nextM = $uriUtil->next($month, 'month');
$prevM = $uriUtil->prev($month, 'month');

echo <<<EOQ
<table width="250">
 <!-- calendar headline -->
 <tr>
 <td align="left"><a href="{
 $_SERVER['PHP_SELF']}?$prevM"><</td>
 <td colspan="5" align="center">$header</td>
 <td align="right"><a href="{
 $_SERVER['PHP_SELF']}?$nextM">></td>
 </tr>
 <tr>

Working with Dates

[266]

 <td align="center">Mon</td>
 <td align="center">Tue</td>
 <td align="center">Wed</td>
 <td align="center">Thu</td>
 <td align="center">Fri</td>
 <td align="center">Sat</td>
 <td align="center">Sun</td>
 </tr></tr>

 <!-- calendar data -->
 <tr>
EOQ;

// from this point the code is similar to the preceding listing

In the next step we will extend the previous example to make the script highlight
empty days and holidays. Additionally the title attribute of the div element will
be used to display a holiday's name when the mouse moves over it in the calendar
output. To determine when to highlight a holiday we will use the selection feature
of the Calendar::build() method. Therefore we first need to build a decorator that
can be used in the selection array of the build() method and provides access to a
Date_Holidays_Holiday object:

if (!defined('CALENDAR_ROOT'))
{
 define('CALENDAR_ROOT', 'Calendar'.DIRECTORY_SEPARATOR);
}
require_once CALENDAR_ROOT.'Decorator.php';

class Calendar_Decorator_Holiday extends Calendar_Decorator
{
 private $holiday;

 public function __construct($Calendar, $holiday)
 {
 parent::Calendar_Decorator($Calendar);
 $this->holiday = $holiday;
 }

 public function getHoliday()
 {
 return $this->holiday;
 }
}

Chapter 5

[267]

Using this decorator in the script that produces the tabular calendar output, we can
now retrieve the holidays of the month to be displayed with the Date_Holidays_
Driver::getHolidaysForDateSpan() method. For each holiday object in the
resulting array a corresponding Calendar_Decorator_Holiday object will be
created. Each decorator object gets passed a Calendar_Day and a Date_Holidays_
Holiday object that share the same date. The decorator objects are put into the
$selection array and passed to the build() method. If the method encounters a
match, the corresponding decorated object will replace the built Calendar_Day object
and get returned by the fetch() method.

Later in the script we iterate over the built Calendar_Day objects to generate the
HTML markup for the calendar. The code is very similar to that in the previous
example. This time, when a day is indicated to be empty we use the HTML class
attribute to assign a CSS class (div.empty) to the surrounding div container. If a day
is not empty we test whether it was selected or not. Non-selected days are displayed
normally and selected days are marked as holidays using the div.holiday class for
the div container. The whole script follows:

require_once 'Calendar/Month/Weekdays.php';
require_once 'Calendar/Util/Uri.php';
require_once 'Calendar/Day.php';
require_once 'Date.php';
require_once 'Date/Holidays.php';
require_once 'Calendar_Decorator_Holiday.php';

setlocale(LC_ALL, $locale= 'en_US');

// get date information from request or use current date
$y = sprintf('%04d', isset($_GET['year']) ? $_GET['year'] :
date('Y'));
$m = sprintf('%02d', isset($_GET['month']) ? $_GET['month'] :
date('m'));

// get holidays for the displayed month
$startDate = new Date($y .'-'. $m . '-01 00:00:00');
$endDate = new Date($y .'-'. $m . '-01 00:00:00');
$endDate->setDay($endDate->getDaysInMonth());
$driver = Date_Holidays::factory('Christian', $y, $locale);
if (Date_Holidays::isError($driver))
{
 die('Creation of driver failed: ' . $driver->getMessage());
}
$holidays = $driver->getHolidaysForDatespan($startDate, $endDate);
if (Date_Holidays::isError($holidays))
{
 die('Error while retrieving holidays: ' . $holidays->getMessage());
}

Working with Dates

[268]

// create selection-array with decorated objects for the build()
// method
$selection = array();
foreach ($holidays as $holiday)
{
 $date = $holiday->getDate();
 $day = new Calendar_Day($date->getYear(), $date->getMonth(),
 $date->getDay());
 $selection[] = new Calendar_Decorator_Holiday($day, $holiday);
}

$month = new Calendar_Month_Weekdays($y, $m, $firstDay = 1);
$month->build($selection);

// Localized text for the calendar headline
$header = strftime('%B %Y', $month->thisMonth('timestamp'));

// URI Util for generation of navigation links
$uriUtil = new Calendar_Util_Uri('year', 'month');
$nextM = $uriUtil->next($month, 'month');
$prevM = $uriUtil->prev($month, 'month');

echo <<<EOQ
<style type="text/css">
 div.empty {background-color: #bfbfbf;}
 div.holiday {background-color: #b8ffa4;}
</style>

<table width="250" cellpadding="0" cellspacing="0">
 <!-- calendar headline -->
 <tr>
 <td align="left"><a href="{$_SERVER['PHP_SELF']}?
 $prevM"><</td>
 <td colspan="5" align="center">$header</td>
 <td align="right"><a href="{$_SERVER['PHP_SELF']}?
 $nextM">></td>
 </tr>
 <tr>
 <td align="center">Mon</td>
 <td align="center">Tue</td>
 <td align="center">Wed</td>
 <td align="center">Thu</td>
 <td align="center">Fri</td>
 <td align="center">Sat</td>
 <td align="center">Sun</td>
 </tr></tr>

Chapter 5

[269]

 <!-- calendar data -->
 <tr>
EOQ;

// iterate over the built weekdays and display them
while ($day = & $month->fetch())
{
 if ($day->isFirst())
 {
 echo '<tr>';
 }

 if ($day->isEmpty())
 {
 echo '<td><div class="empty"> </div></td>';
 }
 else
 {
 if ($day->isSelected())
 {
 echo '<td align="center"><div class="holiday" '
 . 'title="' . $day->getHoliday()->getTitle() . '">'.
 $day->thisDay()
 . '</div></td>';
 }
 else
 {
 echo '<td align="center"><div>'.$day->thisDay().'</div></td>';
 }
 }

 if ($day->isLast())
 {
 echo "</tr>\n";
 }
}
echo '</table>';

The whole listing is not even a hundred lines of code but produces a tabular calendar
that is navigable and highlights holidays. When cleanly separating CSS, HTML,
and PHP code it would be far more concise. The combination of the PEAR Date and
Time section makes it possible! You can see the output it produces in the following
screenshot. With a few more lines of CSS code it would look even more beautiful.

Working with Dates

[270]

Summary
PEAR's date and time section provides three very powerful packages. Each
package is well designed and helps you develop applications that are fast and
effective. A big advantage of the three packages is that you can use them in
combination with each other without fearing incompatibilities. Both the PEAR::
Calendar and Date_Holidays packages are able to use PEAR::Date classes. PHP's
native date and time functions are certainly faster but if you want an object-oriented
API that is comfortable and powerful at the same time, the date packages are a very
good solution.

Index
A
Amazon web service

accessing 179
additional services 187
Amazon account, setting up 179
Amazon API documentation 182
Amazon website, searching 180, 181
locales available 180
parameters list in options array, displaying

182
response controlling 185, 186
Services_Amazon package 179
Services_Amazon package, setting up 179

B
BIFF5 format, Excel spreadsheets 58

C
calendar, creating

attributes, updating 54
Date_Holidays package 54, 56
HTML_Table functions 54
HTML_Table used 53
indivisual cells, setting 54, 56

D
database abstraction

database interface abstraction 6
datatype abstraction 7
speed considerations 7
SQL abstraction 6

database abstraction layers
about 5
AdoDB 5
MDB2 5
Metabase 5
PEAR::DB 5

databse connection, MDB2
about 9
DSN 9
DSN array 9
DSN keys for array 9
DSN string 9

DataGrid
about 70
columns, adding 77, 78
creating 72
creating, steps 72
data displaying 70
data fetching 70
DataSource, creating 73
datasource, using 73
elements required 70
extending 76, 77
formatting options 75, 76
renderer, using 74
Renderers 71
results, paging 73
simple datagrid 72
Structures_Datagrid 70

data presentation
about 51
DataGrid 70
Excel spreadsheets 58
HTML tables 51

[272]

data retrieving, MDB2
about 15
get*() shortcuts 16
getassoc() 17
query*() shortcuts 15

data types, MDB2
about 18
setting 18
setting for get*() 20
setting for query*() 20
setting when fetching results 19
values and identifiers, quoting 20

Date, PEAR::Date Feature
about 224
Date object, creating 224
Date object, manipulating 226
Date object and timezones 235
Date objects and timespans 232
dates, comparing 227
formatted output 228
methods, Date object 225, 226
methods for working with timezones 235,

236
output format constants, Date object 225
Date object 228, 229
Date object 225

Date_Span class, PEAR::Date
Date_Span object, comparing 231, 232
Date_Span object, creating 229, 230
Date_Span object, manipulating 230
formatted output 232
Non Numeric Separated Values input

format 230
placeholders 232
timespan, creating 230
timespan, representing 229
timespan conversions 231
timespan value, modifying 231

Date_Timezone class, PEAR::Date
about 233
Date_Timezone object, comparing 235
Date_Timezone object, creating 234
Date object and timezones 235

date package
conclusion 237
drawbacks 223, 224
need for 223

DBAL. See database abstraction layer
decorators

about 261, 262
base class 262
bundled decorators 262, 263
Calendar_Decorator class 262
graphical output, generating 263, 264
tabular calendar, navigable 265

E
Excel spreadsheets

about 58
background patterns 63
BIFF5 format 58
borders, adding 68
cell position 60
cells 60
creating, different ways 69
creating, PEAR class used 58
data presentation 58
Excel_Spreadsheet_Writer 59
first spreadsheet 59, 60
format 58
formatting 61, 62
formulas, adding 66, 67
images, adding 68
multiple worksheets 67
number formats 65
number formatting 64, 65
page, setting up for printing 60
page formatting options 61
storing 59
working with colors 62, 63

Excel spreadsheets, creating
content-type trick 69
CSV used 69
Excel 2003 files, generating 69
PEAR_openDocument used 70

F
Filler 56

G
Google API

accessing 170

[273]

code, retrieving from Google cache 172
query options 172
Services_Google class 171, 172
SOAP-based service 170
SOAP extension 170

H
HTML tables

about 51
calendar, creating 53
data formatting 56
data presentation 51, 52
Date_Holidays package 54, 56
Filler drivers 56
format 52
HTML_Table_Matrix package 56
HTML_Table package 52, 53
images, displaying 56, 57

M
Manager module, MDB2

about 32
constraints 33
database, creating 32
indices 34
methods for information about database 34
table, altering 33
table, creating 32
table, modifying 33

MDB2
custom functionality 38
database drivers 8
databse connection 9
data types 18
disconnecting 12
fetch mode, setting 12
history 5, 6
installing 8
iterator classes 21
iterators 21
MDB2_Schema 46
MDB2 object, instantiating 10
modules 31
options 10
package design 7, 8
SQL abstraction 6, 23

using 12
values and identifiers, quoting 20

MDB2, extending
about 37
custom debug handler 38, 39
custom fetch classes 40, 41
custom iterators 44
custom modules 44, 45
custom modules, creating 44, 45
custom result classes 41, 42, 43
custom result classes, creating 41, 42

MDB2, using
about 12
data fetching 14
data fetching, methods 14
data retrieving 15
data retrieving shortcuts 15
debugging 22
example 13
iterator classes 21
iterators 21
queries executing 14
values and identifiers, quoting 20

MDB2_Schema
about 46
database dumping 46, 48, 49
installing 46
instantiating 46
RDBMS, switching 49

MDB2 options
about 10
persistent 11
portability 11
portability options 11

MDB2 SQL abstraction
about 23
limits, setting 24
prepared statements 26
queries, replacing 24, 25
sequences 23
sub-select support 25
transactions 30

modules, MDB2
about 31
Function module 35
list of available modules 31
Manager module 32

[274]

Reverse module 36
tables joining query 37

P
PDF

about 78
cells in document 83
colors, adding to document 82
document, creating 79, 80, 81
files, generating 78, 80
font-setting in document 82
headers and footers, creating 83

PEAR
calendar package 250
data presentation 51
Date_Holiday package 237
Date_Holidays package 54
date package 223
MDB2_Schema 46
packages for working with XML 86
PEAR::Calendar 250
PEAR::MDB 5
Structures_Datagrid 70
XML_RPC package 166
 XML_RPC web service, using 167-169
XML packages, building in PEAR 160

PEAR::Calendar
about 250
basic classes 252
calculation engines 251
Calendar_Decorator class 262
calendar date objects, adjusting 260
calendar date objects, validating 259
classes, building 257
classes category 252
date classes 253, 254
date formats, localizing 251
date objects, selection 258, 259
decorators 261
information fetching 257, 258
methods, Calendar_Validator class 259
methods, validation errors 261
methods for information retrieval 255, 257
object, creating 255
tabular calendars 254
tabular date classes 254

validation classes 259
validation errors 260
validation errors, displaying 261

PEAR::Date
about 223
Date_Span class 229
Date_Timezone class 233
Date object, creating 224
drawbacks 223, 224
features 224
need for 223

PEAR::Date_Holiday
about 237
conclusion 250
Date_Holidays_Holiday class 240
driver, creating by country codes 239
driver, instantiating 238, 239
drivers 238
drivers, combining 244
filter 242, 243
filter, types 242, 243
holiday, checking 244, 245
holidays, identifying 239, 240
internationalization (I18N) features 246
language file, adding 247
language file, building 247
language files for holiday title translation

246
localized output 248-250
methods, Date_Holidays_Holiday class

240, 241
methods for getting holiday information

241
multi-lingual translation 246
results, filtering 242

PEAR packages
calendar package 250
Date_Holiday package 237
date package 223
for working with XML 86

PHP
data structure 88
overloading in PHP5 98, 99
PHP5 SPL iterator 44
XML_Parser 131
XML parsing 131

[275]

prepared statements
about 26
auto execute 29
auto prepare 28
binding data 27
multiple rows, executing 28
named parameters 27

R
REST-based web services

about 173
blog, linking 177
blog entries, searching 173-175
blog entries, searching with

Services_Technorati 173
consuming 188
profile page, creating 177
Rest service 214, 215, 217-220, 222
Services_Technorati package 174
Services_Technorati package used 175
SOAP protocol used 173
Technorati, using 173
Technorati cosmos 177, 178
URL 189
using XML_Serializer 212, 213, 214
working 189, 190

RSS
about 157
information storing 159
parsing RSS with XML_RSS 157, 159
XML_RSS 157

S
SAX API 130
SOAP-based web services

error management 210, 212
Services_Webservice, using 206, 207, 209
SOAP extension 205, 210
SOAP extension, drawback 205
WSDL 205

T
tab box, creating 127-129
tabular calendar, navigable

about 265

classes used 265
empty days and holidays, highlighting 266
HTML markup for calendar 267-269
traversing the calendar 265

timestamp
about 223
Unix timestamp 223

timezone
about 233
methods, Date_Timezone class 234
querying information 234

W
web applications

about 163
web services

about 163
consuming 164
offering 196

WSDL
about 205
document 205

X
XML

about 85
advantages 85
Mozilla applications, creating with XML_

XUL 120
packages for processing 130
parsing 131
PEAR packages for working with XML 86
uses 85
XML documents, processing 129
XML packages, building in PEAR 160
XUL documents 120

XML-RPC based web services
about 163, 164
clients, creating 166
consuming 164
error management 202, 203, 205
parameters for XML_RPC_Client class 166
PEAR used 167-169
using 164
XML-RPC server, implementing 198, 199,

201

[276]

XML-RPC service, creating 197, 198
XML_RPC package 166
XML document, composing 165

XML_Beautifier 102
XML_FastCreate

about 97
attributes, adding to tags 100
declaration 101
drawbacks 104
drivers 97
options 101
overloading in PHP5 98, 99
pitfalls 104
tags, creating 97
working 98, 99
XML documents, creating with

XML_FastCreate 97-103
XML_Parser

about 131
callbacks 133
callbacks, implementing 133-136
configuration options, accessing 139
entering 132
extending 140, 142
features 142
inheritance 140, 142
logic, adding to callbacks 136-139
tokens 131
working 132, 133

XML_RSS
about 157
parsing RSS with XML_RSS 157, 159

XML_Serializer
about 105
attributes, adding to tags 109, 110
indexed arrays, treating 110, 111
options 107, 108, 112, 113
type information, adding to XML tags 118,

120
working 105-107
XML documents, creating with

XML_Serializer 105-107
XML_Unserializer

about 143
additional features 156
options 153
parsing attributes 145, 146, 148

record label, unserializing 154, 156
usage 143
XML, mapping to objects 148-151
XML document conversion 143, 144
XML structure, converting to array 148,

150, 151
XML_Util

about 92
additional features 96
tags, creating 92, 93
XML declaration 94
XML documents, creating with

XML_Util 92-95
XML documents, creating

about 86
from object tree using XML_FastCreate 103
from object tree using XML_Serializer 113,

115
from object tree using XML_Util 94
Label class 88, 89
overloading in PHP5 98, 99
Record class 89
record label, creating from objects 88-90
rules for XML documents 86, 87
well-formed document 87
with XML_FastCreate 97-103
with XML_Serializer 105-107
with XML_Util 92-95

XML documents, processing
about 129, 130
need for processing 129
packages for processing 130
SAX API 130
with XML_Unserializer 143

XML Parse and XML_Unserializer,
difference 156, 157

XML parsing
with XML_Parser 131

XML Remote Procedure Call. See XML-RPC
based web services

XML User Interface Language 120
XUL documents

about 120, 121
child elements, adding 125
creating with XML_XUL 123, 124, 126, 127
declaration 122
internal stylesheet, adding 124

[277]

Y
Yahoo web service

about 188
term, searching in Yahoo directory 196

unserialized data, fetching 194
XML_Unserializer, used 193, 194
XML document 191
XML document in modified URL 191-193
Yahoo API, accessing 191

	PHP Programming with PEAR
	Table of Contents
	Preface
	Chapter 1: MDB2
	A Brief History of MDB2
	Abstraction Layers
	Database Interface Abstraction
	SQL Abstraction
	Datatype Abstraction

	Speed Considerations
	MDB2 Package Design
	Getting Started with MDB2
	Installing MDB2
	Connecting to the Database
	DSN Array
	DSN String

	Instantiating an MDB2 object
	Options
	Option "persistent"
	Option "portability"

	Setting Fetch Mode
	Disconnecting

	Using MDB2
	A Quick Example
	Executing Queries
	Fetching Data
	Shortcuts for Retrieving Data
	query*() Shortcuts
	get*() Shortcuts
	getAssoc()

	Data Types
	Setting Data Types
	Setting Data Types when Fetching Results
	Setting Data Types for get*() and query*()

	Quoting Values and Identifiers
	Iterators
	Debugging

	MDB2 SQL Abstraction
	Sequences
	Setting Limits
	Replace Queries
	Sub-Select Support
	Prepared Statements
	Named Parameters
	Binding Data
	Execute Multiple
	Auto Prepare
	Auto Execute

	Transactions

	MDB2 Modules
	Manager Module
	Function Module
	Reverse Module

	Extending MDB2
	Custom Debug Handler
	Custom Fetch Classes
	Custom Result Classes
	Custom Iterators
	Custom Modules
	Mymodule2

	MDB2_Schema
	Installation and Instantiation
	Dump a Database
	Switching your RDBMS

	Summary

	Chapter 2: Displaying Data
	HTML Tables
	Table Format
	Using HTML_Table to Create a Simple Calendar
	Setting Individual Cells

	Extended HTML_Table with HTML_Table_Matrix

	Excel Spreadsheets
	The Excel Format
	Our First Spreadsheet
	About Cells
	Setting Up a Page for Printing
	Adding some Formatting
	About Colors
	Pattern Fill
	Number Formatting
	Adding Formulas
	Multiple Worksheets, Borders, and Images
	Other ways to create Spreadsheets
	CSV
	The Content-Type Trick
	Generating Excel 2003 Files
	Creating Spreadsheets using PEAR_OpenDocument

	DataGrids
	DataSources
	Renderers
	A Simple DataGrid
	Paging the Results
	Using a DataSource
	Using a Renderer
	Making it Pretty
	Extending DataGrid
	Adding Columns

	Generating PDF Files
	Colors
	Fonts
	Cells
	Creating Headers and Footers

	Summary

	Chapter 3: Working with XML
	PEAR Packages for Working with XML
	Creating XML Documents
	Creating a Record Label from Objects
	Creating XML Documents with XML_Util
	Additional Features

	Creating XML Documents with XML_FastCreate
	Interlude: Overloading in PHP5
	Back to XML
	Creating the XML Document
	Pitfalls in XML_FastCreate

	Creating XML Documents with XML_Serializer
	XML_Serializer Options
	Adding Attributes
	Treating Indexed Arrays
	Creating the XML Document from the Object Tree
	Putting Objects to Sleep
	What's your Type?

	Creating Mozilla Applications with XML_XUL
	XUL Documents
	Creating XUL Documents with XML_XUL
	Creating a Tab Box

	Processing XML Documents
	Parsing XML with XML_Parser
	Enter XML_Parser
	Implementing the Callbacks
	Adding Logic to the Callbacks
	Accessing the Configuration Options
	Avoiding Inheritance
	Additional XML_Parser Features

	Processing XML with XML_Unserializer
	Parsing Attributes
	Mapping XML to Objects
	Unserializing the Record Labels
	Additional Features
	XML_Parser vs. XML_Unserializer

	Parsing RSS with XML_RSS

	Summary

	Chapter 4: Web Services
	Consuming Web Services
	Consuming XML-RPC-Based Web Services
	Accessing the Google API
	Consuming REST-Based Web Services
	Searching Blog Entries with Services_Technorati
	Accessing the Amazon Web Service

	Consuming Custom REST Web Services

	Offering a Web Service
	Offering XML-RPC-Based Web Services
	Error Management

	Offering SOAP-Based Web Services
	Error Management

	Offering REST-Based Services using XML_Serializer
	Our Own REST Service

	Summary

	Chapter 5: Working with Dates
	Working with the Date Package
	Date
	Creating a Date Object
	Querying Information
	Manipulating Date Objects
	Comparing Dates
	Formatted Output
	Creating a Date_Span Object
	Manipulating Date_Span Objects
	Timespan Conversions
	Comparisons
	Formatted Output
	Date Objects and Timespans

	Dealing with Timezones using Date_Timezone
	Creating a Date_Timezone object
	Querying Information about a Timezone
	Comparing Timezone Objects
	Date Objects and Timezones

	Conclusion on the PEAR::Date Package

	Date_Holidays
	Instantiating a Driver
	Identifying Holidays
	The Date_Holidays_Holiday Class

	Calculating Holidays
	Getting Holiday Information
	Filtering Results
	Combining Holiday Drivers

	Is Today a Holiday?
	Multi-Lingual Translations
	Adding a Language File
	Getting Localized Output

	Conclusion on Date_Holidays

	Working with the Calendar Package
	Introduction to Basic Classes and Concepts
	Object Creation
	Querying Information
	Building and Fetching
	Make a Selection

	Validating Calendar Date Objects
	Validation Versus Adjustment
	Dealing with Validation Errors

	Adjusting the Standard Classes' Behavior
	What are Decorators?
	The Common Decorator Base Class
	Bundled Decorators

	Generating Graphical Output
	Navigable Tabular Calendars

	Summary

	Index

